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Abstract—The advent of cloud computing and inexpensive multi-core desktop architectures has led to the widespread adoption of
virtualization technologies. Furthermore, security researchers embraced virtual machine monitors (VMMs) as a new mechanism to
guarantee deep isolation of untrusted software components, which, coupled with their popularity, promoted VMMs as a prime target for
exploitation. In this paper, we present HyperCheck, a hardware-assisted tampering detection framework designed to protect the
integrity of hypervisors and operating systems. Our approach leverages System Management Mode (SMM), a CPU mode in x86
architecture, to transparently and securely acquire and transmit the full state of a protected machine to a remote server. We have
implement two prototypes based on our framework design: HyperCheck-I and HyperCheck-Il, that vary in their security assumptions
and OS code dependence. In our experiments, we are able to identify rootkits that target the integrity of both hypervisors and operating
systems. We show that HyperCheck can defend against attacks that attempt to evade our system. In terms of performance, we
measured that HyperCheck can communicate the entire static code of Xen hypervisor and CPU register states in less than 90 million

CPU cycles, or 90 ms on a 1 GHz CPU.

Index Terms—Hypervisor, system management mode, kernel, Coreboot

1 INTRODUCTION

VIRTUALIZATION technologies have become the de facto
standard in server consolidation because they decrease
the energy footprint and cost of management of modern
computing clusters. Additionally, hypervisors are increas-
ingly used as components to enforce system security and
resilience [1], [2], [3], [4], [5], [6], [7].

Due to their widespread adoption, hypervisors have
attracted the attention of attackers. National vulnerability
data [8] shows that there are 73 security vulnerabilities in
Xen and 30 vulnerabilities in VMWare ESX. Moreover, a
number of virtual machine escape attacks [9], [10], [11] and
hypervisor rootkits [12] are widely deployed. Security
researchers have noticed this problem and have begun to
improve hypervisor security [13], [14], [15].

The increase of vulnerabilities and the observed attack
trends have spurred research towards reducing the Trusted
Code Base (TCB) of current commercial hypervisors [16].
Others developed new specialized prototypes of hypervi-
sors [6], [17]. However, having a small code base can only
limit the code exposure and reduce the attack surface of the
hypervisor—it cannot provide a strong guarantee about the
code integrity of all the hypervisor components.
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To address these limitations and to complement the
existing protection mechanisms, we design a hardware-
assisted tampering detection framework called HyperCheck
to protect the integrity of hypervisors or operating systems.
To achieve that, HyperCheck harnesses the CPU System
Management Mode (SMM) present in all x86 commodity
systems to create a snapshot view of the current states of the
CPU and memory of the protected machine. This informa-
tion is securely transmitted using a network card to a
remote monitor machine. Then, the monitor machine can
identify any tampering by comparing the newly generated
snapshot with the one recorded when the machine was ini-
tialized. If the two views do not match, a human operator is
notified for further investigation. As shown in Fig. 1, Hyper-
Check works at the Basic Input-Output System (BIOS) level
and can protect the software above. We assume that the
attacker does not have physical access to the machine and
the SMM is locked so that it cannot be modified after boot-
ing. We will discuss more BIOS attacks in Section 7.

Unlike previous work [18] with specialized PCI hard-
ware, we are able to acquire a complete view of the target
machine, including the entire physical memory and CPU
registers using SMM and a generic PCI hardware device. In
addition, our approach is able to thwart attacks aimed at
disabling and blocking the PCI device because the monitor
machine can be used to detect a denial-of-service attack. To
evaluate the security and performance of our framework,
we implement two prototypes of HyperCheck framework,
HyperCheck-I and HyperCheck-11, on real, physical machines.
They are implemented and deployed on two different
machines depending on the availability of the BIOS source
code. In HyperCheck-I where the BIOS is closed source,
we perform reverse engineering on BIOS to make changes
and rely on a kernel module to setup network packets
that are transmitted by SMM. To reduce the development
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Fig. 1. HyperCheck can offer protection to services running above the
BIOS.

complexity and overcome the hardware limitation, we
leverage an open-source BIOS called Coreboot [19] in
HyperCheck-II to add a trusted network driver and secure
packet transmission in SMM.

Our prototypes are able to expose rootkits aimed at
Xen hypervisor, Xen Domain 0, Linux and Windows. In
addition, HyperCheck is able to defend evasion attacks
existing in the polling-based systems. We use a PCI network
card to randomly trigger SMI and check the triggering rea-
son in SMM. Furthermore, we randomize the time spent in
SMM so that the attacker cannot accurately predict when
SMM exits. Section 5.5 details our methods.

Our approach is agnostic to the underlying system and
it is straightforward to extend our system to protect any
other hypervisors (e.g.,, VMWare ESX) or OSes. Our
experimental results indicate that HyperCheck introduces
a reasonable overhead and only requires 90 million CPU
cycles to completely transmit 2.8 MB of Xen code and
Domain 0 code. In addition, we analyze the transmitting
packet size to optimize the network delay. To measure
the overall system impact of HyperCheck, we employ a
popular benchmark to test the system overhead by vary-
ing the sampling intervals.

In summary, we make the following contributions:

1. Design a novel hardware-assisted tampering detec-
tion framework that creates a complete snapshot of
the states of the system with commercial hardware
and no modifications to the installed software.

2. Demonstrate that HyperCheck can securely and
transparently transmit the CPU registers, static code
and control data of hypervisors or OSes to a remote
server. HyperCheck is able to thwart evasion attacks
against SMM-based polling systems.

3. Implement two HyperCheck prototypes. Hyper-
Check-I is implemented on real hardware with
closed-source BIOS; HyperCheck-II improves the
security and reduces the development complexity of
HyperCheck-I by using an open-source BIOS called
Coreboot.

4. Both HyperCheck-I and HyperCheck-II introduce a
reasonable overhead. Both systems can successfully
detect rootkits and code integrity attacks against the
Xen hypervisor, Xen Domain 0, Linux and Windows.

This paper is an expanded version of our previous work

[14] published in RAID 2010 and is organized as follows.
Section 2 provides background information on SMM and
BIOS. Section 3 discusses the threat model and assumptions.
Section 4 presents the HyperCheck framework. Section 5
details the two prototype implementations, and we evaluate
them in Section 6. Section 7 provides the security analysis
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and discusses the limitations. Section 8 discusses related
work, and Section 9 concludes this paper.

2 BACKGROUND

2.1 System Management Mode

System Management Mode is a separate CPU mode from
the protected mode and real mode. It provides a transparent
mechanism for implementing system-control functions,
such as power management and system security. SMM is
implemented by the Basic Input-Output System. SMM is
entered via the system management interrupt (SMI) when
the SMM interrupt pin is asserted. The microprocessor auto-
matically saves its entire state in a separate address space
known as system management ram (SMRAM) and enters
SMM to execute an SMI handler. The program executes the
rsm instruction to exit SMM. The SMRAM is inaccessible
from other CPU modes (while not in SMM); therefore, it can
act as a trusted storage space.

2.2 BIOS, UEFI and Coreboot

BIOS is an indispensable component for all computers. The
main function of the BIOS is to initialize the hardware devi-
ces, including the processor, main memory, chipsets, hard
disk, and other necessary 10 devices. BIOS code is normally
stored on a non-volatile ROM chip on the motherboard. In
recent years, a new generation of BIOS, referred to as uni-
fied extensible firmware interface (UEFI) [20], has become
increasingly popular in the market. UEFI is a specification
that defines the new software interface between OS and
firmware. One goal of UEFI is to ease the development by
switching to the protected mode in an early stage and writ-
ing most of the code in C language. A portion of the Intel
UEFI frame (named Tiano Core) is open source; however,
the main function of the UEFI (to initialize the hardware
devices) is still closed source. Coreboot (formerly known as
LinuxBIOS) is an open-source project aimed at replacing the
proprietary BIOS (firmware) in most of today’s computers.
It performs a small amount of hardware initialization and
then executes a so-called payload. Similar to the UEFI-based
BIOS, Coreboot also switches to protected mode in a very
early stage and is written mostly in the C language. Our
HyperCheck-II prototype implementation is based on Core-
boot V4. We choose to use Coreboot rather than UEFI
because Coreboot does all of the hardware initializations,
whereas we would need to implement UEFI firmware from
scratch, including obtaining all of the data sheets for our
motherboard and other devices.

3 THREAT MODEL AND ASSUMPTIONS

3.1 Attacker Capabilities

The adversary is able to exploit vulnerabilities in any soft-
ware running in the machine after booting. The software
includes the VMM and all of its privileged components. For
instance, the attacker can compromise a guest domain and
escape to the privileged domain. When using PCI pass-
through on Intel VT-d chipsets that do not have interrupt
remapping, Xen 4.1 and 4.0 allow the guest OS to gain host
OS privileges by using DMA to generate malicious MSIs
[11]. In Xen 3.0.3, pygrub [21] allows local users with
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elevated privileges in the guest domain (Domain U) to exe-
cute arbitrary commands in Domain 0 via a crafted grub.
conf file [22]. In addition, the attacker can modify the
hypervisor code or data using any known or zero-day
attacks. For instance, the DMA attack [23] hijacks a device
driver to perform unauthorized DMA accesses to the hyper-
visor’s code and data.

HyperCheck aims to detect OS rootkits or hypervisor
rootkits. One kind of rootkit only modifies the memory
and/or registers and runs in the kernel level. For instance,
the IDT-hook rootkit [24] modifies the interrupt descriptor
table (IDT) in the memory and then gains control of the
complete system. A stealthier version of the IDT-hook root-
kit (we call it a copy-and-change attack) could keep the orig-
inal IDT unchanged by copying it to a new location and
altering it. Next, the attacker could change the IDTR register
to point to the new location. Thus, a malicious interrupt
handler would be executed when an interrupt occurs [25].
Our system could detect rootkits in an OS running on bare
metal and rootkits in a native hypervisor.

3.2 General Assumptions

First of all, we assume BIOS is trusted. Since SMM code is
loaded into SMRAM from the BIOS, we assume the
SMRAM is properly set up by the BIOS while booting. To
secure the BIOS code [26], [27], we can use a signed-BIOS
mechanism to prevent any modification of the BIOS code,
but this method requires that the BIOS updating process is
securely implemented and trusted. An alternative way to
secure the BIOS is to use Static Root of Trust Measurement
(SRTM) to perform a trusted boot, and it requires that the
Core Root of Trust Measurement (CRTM) is trusted and
secure. The SMRAM is locked after booting into the OS.
Once it is locked, we assume it cannot be subverted by the
attacker (an assumption supported by current hardware),
and we will discuss more SMM attacks in Section 7. Further-
more, we assume attackers do not have physical access to
our system.

Currently, our system cannot protect against attacks that
modify dynamic data, such as modification of dynamically
generated function pointers and return-oriented program-
ming attacks. In these attacks, the control flow is redirected
to a memory location controlled by the attackers. Hyper-
Check can leverage existing solutions (e.g., Address Space
Layout Randomization (ASLR) [28], [29]) to prevent or miti-
gate such attacks; however, it is not the focus of this paper.
Section 7 provides a further discussion on the limitations of
our system.

4 THE HYPERCHECK FRAMEWORK

HyperCheck is composed of three key components: the
physical memory acquisition module, the analysis module,
and the CPU register checking module. Both the physical
memory acquisition module and CPU register checking
module are on the target machine, and the analysis module
is on the monitor machine. The memory acquisition module
reads the memory contents of the protected machine and
sends it to the analysis module, which then checks the mem-
ory contents for any malicious alterations. The CPU register
checking module reads the CPU registers and validates
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Fig. 2. The architecture of HyperCheck.

their values. The overall architecture of HyperCheck is
shown in Fig. 2. Before introducing the three key compo-
nents, we first describe our design principles.

4.1 Design Principle

Our main design principle is that HyperCheck should not
rely on any software running on the machine except the
BIOS. Because SMM code resides in the BIOS, the BIOS and
the monitor machine should be the only Trusted Computing
Base (TCB) in our system. Therefore, we could use SMM to
read the CPU registers and memory contents, and then use
a PCI Ethernet card to send out this information to the mon-
itor machine. Usually, Ethernet cards are PCI devices with
bus master mode enabled and can read the physical mem-
ory through DMA, which does not need help from the CPU.
SMM is an independent operating mode and can be made
inaccessible from other CPU modes where hypervisors and
privileged domains run.

Previous researchers only use PCI devices to read the
physical memory [18]; however, CPU registers (e.g., CR3
and IDTR registers) are also important for rootkit detection
because they define locations of active memory used by the
hypervisor or the OS kernel. Without protecting these regis-
ters, an attacker can launch a copy-and-change attack by
updating the registers to point to a new memory location
controlled by the attacker. For instance, the attacker can pre-
pare a malicious copy of the IDT table and change the IDTR
register, pointing to the new IDT table [25]. Since PCI devi-
ces cannot read the CPU registers, it fails to detect this
attack. By using SMM, HyperCheck can examine the CPU
registers and report suspicious modifications.

4.2 HyperCheck Components
4.2.1  Acquiring Physical Memory

In HyperCheck, we choose the hardware-based method to
read the physical memory. There are several options for
hardware components, such as PCI devices, FireWire bus
devices, or a customized chipset. We use a PCI network
card because it is the most popular and commonly used
hardware device. Note that existing commercial Ethernet
cards need to install device drivers, and these drivers nor-
mally run in the OS or the driver domain, which is vulnera-
ble to the attacks and may be compromised in our threat
model. To avoid this problem, HyperCheck moves these
device drivers into the SMI handler, which is inaccessible to
the attackers after the SMRAM is locked. In addition, to pre-
vent a malicious NIC from spoofing the NIC driver in
SMM, we use a secret key to authenticate the transmitted
packets. The key can be obtained from the monitor machine
while the target machine is booting up and then stored in
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the SMRAM. The key is used as a random seed to selectively
hash a small portion of the data to avoid data replay attacks.

Since paging is not enabled in SMM, HyperCheck uses
the CR3 register to translate the virtual memory
addresses used by the OS kernel to the physical memory
addresses used by the SMM. Since the acquisition module
relies on physical addresses to read the memory contents,
HyperCheck needs to find the physical address of the
protected hypervisor and privileged domain. One method
is to use the system.map file to get the virtual addresses
of symbols. HyperCheck uses this method to obtain the
virtual addresses of monitoring symbols. However, we
believe there are many other ways to obtain these
addresses. For instance, the system call table address can
be found by using the interrupt vector of the INT 0x80
system call [30]. From the symbol files, HyperCheck first
reads the virtual addresses of the target memory and
then utilizes CR3 register to find the physical addresses
corresponding to the virtual ones. Another possible way
to get the physical addresses without using page table
translation is to scan the entire physical memory and use
pattern matching to find all potential targets. However,
this method is not efficient because hypervisors and OS
kernels have a small memory footprint.

Furthermore, HyperCheck should be able to check the
integrity of any software above the BIOS. Although we focus
on the Xen hypervisor in this paper, HyperCheck also can be
used to check KVM or other hypervisors. Some operating
systems use Address Space Layout Randomization in kernel
booting (e.g., Windows 7 [28]), which adds a fixed offset
when setting up virtual address space. For example, Kernel
Processor Control Region (KPCR) is located at a fixed virtual
address 0xffdff000 in Windows XP and Windows 2000. In
Windows 7, KPCR structure is no longer at a fixed address.
However, researchers have demonstrated that the KPCR
structure can be acquired by conditional searching of physi-
cal memory [31]. After obtaining the KPCR structure, we are
able to bridge the semantic gap [32] in the physical memory
and identify the targeting memory contents.

4.2.2 Analyzing Memory Content

In practice, there is a semantic gap between the physical
memory addresses in SMM that we monitor and the virtual
memory addresses used by the hypervisor or the OS. To
verify the memory contents, the analysis module must be
aware of the semantics of the memory layout, which
depends on the specific hypervisor or the OS we monitor.
The current analysis module depends on three properties of
the kernel (OS or hypervisor) memory: linearity, stability,
and perpetuity.

The linearity means that the kernel virtual memory is lin-
early mapped to physical memory and the offset is fixed.
For instance, on x86 architecture, the virtual memory of Xen
hypervisor is linearly mapped into the physical memory.
In order to translate the virtual address to a physical
address in Xen, we need only to subtract the virtual address
from an offset. In addition, Domain 0 of Xen is also linearly
mapped to the physical memory. The offset for Domain 0 is
machine dependent but remains the same on a given
machine. Moreover, other OS kernels, such as Windows
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[33], Linux [34] and OpenBSD [35], also have this property
when they are directly running on bare metal.

The stability property means that the contents of the
monitored memory must be static. If the contents are
changing, there might be a time window between the
memory changing and our acquisition module reading
them. This may result in inconsistency for analysis and
verification. As a result, HyperCheck does not check on
dynamic kernel data (e.g., kernel stack).

The perpetuity property means that the memory used by
hypervisors will not be swapped out to the hard disk. If the
memory is swapped out, then we cannot identify or match
any content by only reading the physical memory. We
would have to read the swapped files on the hard disk. For
instance, Windows kernel code can be swapped to a disk.
For this case, we have two solutions to read these swapped
pages in the HyperCheck system. One method is to port a
small disk driver in SMM to enable disk access. Then, we
can use page table information to locate these pages on disk
and send them to the monitor machine for integrity check-
ing. The other solution is simply to wait for the swapped
pages to swap back into memory. Since HyperCheck enters
SMM periodically, we can check the page table information
to see if the pages have been swapped in. After these pages
are present in the memory, we send them out in SMM.
Additionally, we can force these pages to be swapped back
into memory by accessing them to generate page faults.

HyperCheck relies on these three properties (linearity,
stability, perpetuity) to work correctly. Besides the Xen
hypervisor, most OSes have these three properties, too.

4.2.3 Reading and Verifying CPU Registers

Since the PCI NIC card cannot read the CPU registers, we
must use another method to read them. Fortunately, SMM
can read and verify the CPU registers. When the CPU
switches to SMM, it saves the register context in the SMRAM.
The default SMRAM size is 64 KB. The processor fetches the
first instruction of the SMI handler at the address [SMBASE
+ 0x8000], and it stores the CPU states in the area from
[SMBASE + 0xFE00] to [SMBASE + OxFFFF] [36]. The default
value of SMBASE is 0x30000. HyperCheck verifies the regis-
ters in SMM and reports the result via the Ethernet card to
the monitor machine. HyperCheck focuses on monitoring
two registers: IDTR and CR3. IDTR should never change
after system initialization. For CR3, SMM code uses it for
memory address translation of the hypervisor kernel code
and data. The offsets between physical addresses and virtual
ones should never change as we discussed in Section 4.2.2.

5 IMPLEMENTATION

We implement two prototypes for HyperCheck on two
physical machines: HyperCheck-I uses an original closed-
source BIOS, and HyperCheck-II uses an open-source BIOS
called Coreboot [19]. We first develop HyperCheck-I for
quick prototyping and debugging. After that, we implement
HyperCheck-II as an improved version of our previous pro-
totype in terms of security and scalability.

HyperCheck-I follows the HyperCheck framework
shown in Fig. 2 to use two physical machines: one as the tar-
get machine and the other as the monitor machine. On the
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target machine, we install Xen 3.1 natively and use Intel
€1000 Ethernet card as the acquisition module. We modify
the default SMM code in the original Dell BIOS on the target
machine to transfer system states to the monitor machine.
Since we use original BIOS with closed source code, we
need to apply reverse engineering methods to change the
default SMI handler code [37] on the target machine. How-
ever, HyperCheck-I comes with two drawbacks. First, it
relies on an unlocked SMRAM to inject the customized SMI
handler code while most of machines today have locked
their SMRAM. The other drawback of the HyperCheck-I
design is the high development complexity. Due to the
time-consuming reverse engineering required and the usage
of assembly language, it is difficult to add new functions
into the BIOS. For instance, we have to use a kernel module
to prepare the network transmit descriptors, instead of
implementing all the functions in the BIOS. Therefore, we
implement another HyperCheck prototype called Hyper-
Check-II using Coreboot, an open-source BIOS.
HyperCheck-II also uses one physical machine as the tar-
get machine and another physical machine as the monitor
machine. Coreboot can provide an unlocked SMRAM for us
to add customized SMI handler code. HyperCheck-II locks
the SMRAM in the Coreboot after booting. Since we can
directly modify the BIOS code on the target machine, we
can easily program the SMM code in the BIOS instead of
performing reverse engineering of the BIOS in Hyper-
Check-I. In addition, we write C code in HyperCheck-II
rather than the assembly code found in HyperCheck-1.

5.1 Memory Acquisition Module

HyperCheck uses a dedicated PCI network card to transfer
the memory contents. In our prototype, we have two net-
work interfaces on the target machine. We use an Intel
€1000 network card to transfer the system states and the
integrated network card for the normal traffic. When we
implement the acquisition module, the main task is to port
the 1000 network card driver into SMM to scan the mem-
ory and send it out to the monitor machine. Since Hyper-
Check-I does not have the source code of the BIOS, we use a
similar method mentioned in [37] to modify the default
SMM code in the BIOS. It writes the SMM code in 16-bit
assembly code, uses a user-level program to open
the SMRAM, and then copies the assembly code to the
SMRAM. While HyperCheck-II uses the open source Core-
boot as the BIOS, we have full control over the BIOS code.
Thus, we can write C code to port the e1000 NIC driver into
SMI handler of HyperCheck-II.

Both HyperCheck-I and HyperCheck-II split the e1000
NIC driver into two parts: initialization and data transfer-
ring. The initialization part is complex and similar to the
Linux NIC driver. The data transferring part is much sim-
pler than the NIC initialization part. Therefore, we modify
the existing Linux e1000 NIC driver to only initialize the
network card and move the packet transferring part into the
SMI handler. In HyperCheck-I, we compile the assembly
code of data transferring into an ELF object file, use a small
loader to parse the ELF object file, and then load the code
into SMRAM. In HyperCheck-II, we write the data transfer-
ring code in Coreboot directly, compile the BIOS code to a
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new ROM image, and flash the image into the BIOS chip of
the target machine.

After porting the 1000 NIC driver into the SMM, we
modify the driver to scan the memory and send the contents
to the monitor machine. HyperCheck uses two transmission
descriptors per packet, one for the packet header and the
other for the packet data. The content of the header should
be predefined. In our prototypes, there are 14 bytes in the
header, which includes the source MAC address, destination
MAC address, and two bytes of protocol type. Since the NIC
has been initialized by the OS, the driver in SMM only needs
to prepare the TX descriptor ring, and then write the index of
the last descriptor in the ring to the Transmit Descriptor Trail
(TDT) register. The NIC would automatically send all of the
packets in the TX descriptor ring to the monitor machine
using DMA. The NIC driver also needs to prepare a header
structure and point the header TX descriptors to this header.
For the payload, the data descriptors directly point to the
address of the memory that needs to be sent out.

To prevent replay attacks, a secret key is transferred
from the monitor machine to the target machine during
the booting of the target machine. The key is used to cre-
ate a random seed to selectively hash the data. If we
hash the entire data stream, the performance impact may
be high. To reduce the overhead, we use the secret key
as a seed to generate one big, random number used for
a one-time pad encryption and another set of serial ran-
dom numbers. The serial random numbers are used as
the indices of the positions of the memory. Then, the
contents at these positions are XORed with the big, ran-
dom number before starting NIC DMA. After the trans-
mission is done, the memory contents received by the
monitor machine is XORed again to restore the original
value.

The NIC driver also checks the loop-back setting of the
device before sending the packet. To further guarantee the
data integrity, the NIC driver stays in the SMM until all of
the packets have been written to the internal FIFO of the
NIC. Then, it adds an extra 16 KB data to the end to flush
the internal 16 KB FIFO buffer of the NIC. Thus, the attacker
cannot use loop-back mode to get the secret key or peek into
the internal NIC buffer through debugging registers of the
NIC.

5.2 Analysis Module

We use a direct Ethernet cable to connect the monitor
machine and the target machine, and we assume that the
monitor machine is trusted. Therefore, the target machine
does not need to authenticate the monitor machine. If
we connect the two machines through the Internet, further
authentication mechanisms will be needed. On the monitor
machine, we run tcpdump to capture the packets from the
acquisition module and send the output of tcpdump to the
analysis module. The analysis module is written in a Perl
script that reads the input and checks for any alteration.
First, the analysis module recovers the memory contents
using the same secret key. Then, it compares two consecu-
tive memory snapshots bit by bit. If they are different, the
analysis module outputs an alert on the console. The admin-
istrator can decide whether it is a normal update of the
hypervisor or an intrusion. Note that during the booting
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time of the system, the contents of those control data and
code may change.

The analysis module checks the integrity of the static
code and control data of Xen. The static code is Xen hypervi-
sor code; the control data includes the IDT table, the hyper-
call table and the exception table of Xen. To find the
physical addresses of these control tables, we use Xen.map
symbol file. First, we find the virtual addresses of idt_ta-
ble, hypercall_table and exception_table. The
physical addresses of these symbols are equal to virtual
address minus fixed offset 0xff000000 on x86-32 bit architec-
ture with PAE enabled. The address of Xen hypervisor code
is from _stext to _etext. HyperCheck can also monitor
the control data and static code of Domain 0. It includes the
system call table and the code part of Domain 0 (Cent OS
5.3 uses a modified Linux 2.6.18 kernel). The kernel of
Domain 0 is also linearly mapped to the physical memory.
We use a kernel module running in Domain 0 to compute
the exact offset. On our target machine, the offset is
0x83000000. Note that there is no IDT table for Domain 0,
since there is only one such table in the hypervisor. We also
use these parameters in the acquisition module to improve
the scan efficiency.

5.3 CPU Register Checking Module

HyperCheck monitors IDTR and CR3 registers in the CPU
register checking module. The contents of IDTR should
never change after the system boots up. The SMM code can
read this register by 1idt instruction. HyperCheck uses CR3
to translate the virtual addresses to physical addresses.
Essentially, it walks through all the page tables as to what a
hardware Memory Management Unit (MMU) does. Note
that offset between the virtual address and the physical
address of the hypervisor kernel code and data should never
change due to the static mapping. For example, it is
0xff000000 for Xen 32 bit with PAE enabled. If any physical
address is not equal to virtual address minus the offset, it
indicates a potential attack. The SMM code reports the check-
ing result via the Ethernet card to the monitor machine.

5.4 From HyperCheck-I to HyperCheck-II

Since we cannot directly change the closed-source BIOS in
HyperCheck-I, the development and debugging complexity
hinders the system extension with other functionalities and
the verification of system security. Therefore, we are moti-
vated to implement another HyperCheck prototype using
Coreboot, an open-source BIOS.

Similar to HyperCheck-I, HyperCheck-II reserves a small
portion of memory by adding the boot parameter
mem=2, 000M to the Xen hypervisor or Linux kernel. Since
the total memory size is 2,048 MB, it saves 48 MB of memory
to store the TX descriptor ring.

HyperCheck-II does not rely on any kernel modules but
the trusted BIOS. After the system triggers SMI, it enters
SMM and executes the SMI handler, which scans the mem-
ory, obtains the location of the memory, prepares the TX
descriptors, and writes them to the TX descriptor ring in the
reserved memory. Next, the NIC card reads the TX descrip-
tor ring and sends out the data. After NIC finishes sending
the data, the system exits SMM.
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HyperCheck-II is more secure than HyperCheck-I.
HyperCheck-1 prepares the TX descriptor ring using a
kernel module that may be compromised by attackers.
Instead, HyperCheck-II can overcome this security flaw
by preparing the TX descriptors in the SMI handler. Even
if the attacker owns the OS, it still cannot manipulate the
operations in the SMI handler that is securely loaded into
the locked SMRAM. In addition, HyperCheck-I requires
an unlocked SMRAM to load our customized SMM code;
Coreboot can add a customized SMI hander and lock
SMRAM before the system boots up. Additionally, Hyper-
Check-1II is robust to defend evasion attacks, as discussed
in the next section.

5.5 Evasion Attack Defense

Most polling-based integrity checking systems (e.g., [14],
[15], [38]) are vulnerable to evasion attacks. If the polling
time is detectable, an attacker can clean the attacking trace
before the polling and reload the malicious code after. As
discussed in our previous work [39], there are three types of
evasion attacks for polling-based systems. The first type
(Type-D) is to directly intercept the triggering events by
detouring SMI invocation. The software-based SMI trigger-
ing writes to a specific port, and the attacker can locate the
code (out %aL, %0x82) in memory to detour the program
execution before triggering SMI. The hardware-based SMI
triggering method can be rerouted to normal interrupt and
reissue another SMI triggering. The second type (Type-II) of
evasion attack is to indirectly derive periodicity of the poll-
ing time by using an SMI detector. After knowing the poll-
ing time, an attacker can launch the evasion attack between
two checks. The last type (Type-III) of evasion attack is to
avoid random polling by running a small, malicious task
after exiting SMM. This type of evasion attack assumes the
attacker knows when the SMM exits.

HyperCheck-I may suffer from evasion attacks; however,
HyperCheck-II can prevent all three types of evasion
attacks. We use Message Signaled Interrupts (MSI) in a PCI
network card to invoke SMI. The delivery mode of MSI reg-
ister in PCI configuration space can be set as the SMI mode.
However, if the hypervisor or OS has been compromised,
the attacker can modify MSI register to trigger a normal
interrupt controlled by the attacker and then reissue an SMI
(Type-1 evasion attack). To trigger the same SMI, the
attacker needs to know the MAC address of the dedicated
NIC card and use another machine to send an authenticated
packet to reissue the same SMI. Since the secret key is
saved in SMRAM, the attacker cannot send the authenti-
cated packet without knowing the secret key. Furthermore,
the attacker may use other methods to trigger SMI, but we
can prevent it by checking the reason for the triggered SMI,
which has also been implemented in HyperSentry [15].

In order to defend Type-II evasion attacks, HyperCheck-
II randomly triggers SMI using a dedicated commercial net-
work card. We read /dev/random on the monitor machine
as the pseudo-random generator seed and set a random
delay between two SMI triggering packets. When an
authenticated packet reaches the NIC interface, an SMI is
generated by a Message Signaled Interrupt.

Type-III evasion attack runs a small, malicious task after
SMM exits to avoid the random polling. However, this type
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TABLE 1
Symbols for Xen Hypervisor, Domain 0, Linux and Windows
System Symbol Usage
idt_table Interrupt Descriptor Table
Xen hypercall_table | Hypercall Table
exception_table | Exception Table
_stext Beginning of Hypervisor Code
_etext End of Hypervisor Code
sys_call_table Dom0'’s System Call Table
Dom0 _text Beginning of Dom0’s Kernel Code
_etext End of Dom0’s Kernel Code
idt_table Kernel’s Interrupt Descriptor Table
Linux sys_call_table Kernel’s System Call Table
_text Beginning of Kernel Code
_etext End of Kernel Code
Windows PCR—idt Kernel’s Interrupt Descriptor Table
KiServiceTable | Kernel’s System Call Table

of evasion attack needs to know when SMM exits. In Hyper-
Check-II, we include a random delay function in the SMI
handler, so the SMI handler will take various amounts of
time between two checkings. Thus, the attacker cannot accu-
rately predict when SMM exits.

6 EVALUATION

We evaluate the HyperCheck system on two different
testbeds for HyperCheck-I and HyperCheck-II. The moni-
tor machine is the same for both HyperCheck-I and
HyperCheck-II. It is a Dell Precision 690 with 8 GB RAM
and one 3.0 GHz Intel Xeon CPU with two cores. The
host operating system is 64-bit CentOS 5.3. The target
machine in HyperCheck-I is implemented on a Dell Opti-
plex GX 260 with one 2.0 GHz Intel Pentium 4 CPU and
512 MB memory. Xen 3.1 and Linux 2.6.18 is installed on
the physical machine, and the Domain 0 is CentOS 5.4.
The Dell BIOS version AQ9 is closed source. The target
machine in HyperCheck-II uses an ASUS M2V-MX_SE
motherboard with 2.2 GHz AMD Sempron LE-1250 CPU
and 2 GB memory. We install CentOS 5.5 as the operat-
ing system. We replace the original BIOS with the open
source Coreboot V4.

6.1 Code Size

In the HyperCheck-I implementation, we inject about 100
lines of assembly code into the original BIOS. Since Hyper-
Check-II uses the open source Coreboot, we add only 200
lines of C code into Coreboot source tree. The code base of
Coreboot V4 is 232,315 lines of code, and its payload Seabios
has 21,576 lines of code, which are measured using sloc-
count [40].

6.2 Verifying the Static Property

We verify an important system assumption that the control
data and respective code are statically mapped into the
physical memory. We use a monitoring module designed to
detect legitimate control data and code modifications
throughout the experiments. It enables us to test our
approach against data changes and self-modifying code in
the Xen hypervisor and Domain 0. We also test the static
properties of Linux 2.6 and Windows XP 32-bit kernels. In
all these tests, the hypervisor and the OSes are booted into a
minimal state. The symbols used in the experiments are
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shown in Table 1. During system booting time, we find that
the control data and the code may change. For example, the
physical memory of IDT is all Os when the system first boots
up, but after several seconds, it becomes non-zero and
static. The reason is that the IDT table is initialized later in
the booting process.

6.3 Integrity Attacks Detection

To verify HyperCheck’s capability of detecting attacks
against the hypervisor, we implement DMA attacks [23] on
the Xen hypervisor. Firstly, we port the HDD DMA attacks
to modify the Xen hypervisor and Domain 0. In this experi-
ment, there are four attacks against the Xen hypervisor
(modifying IDT table, hypercall table, exception table and
Xen code) and two attacks against Domain 0 (modifying
system call table and Domain 0 code). In another experi-
ment, we modify the pcnet network card to perform the
DMA attack from the hardware directly. The modified
penet NIC is used to attack Linux and Windows operating
systems. This experiment includes three attacks against
Linux 2.6.18 kernel (modifying IDT table, system call table
and kernel code) and two attacks to Windows XP SP2 kernel
(modifying IDT table and system call table). In our experi-
ments, HyperCheck-I and HyperCheck-II correctly detect
all of these attacks and report the memory content changes
on the target machine.

6.4 Breakdown of HyperCheck
To quantify how much time is required to execute each step
in the system, we breakdown the HyperCheck into four log-
ical operations: 1) SMM context switch; 2) TX descriptors
preparation; 3) XOR data; and 4) packet transmission. To
measure the time for each operation, we use rdtsc instruc-
tion to print out the TSC counter value. This experiment is
conducted on both HyperCheck-I and HyperCheck-II. The
sending data size is about 2.8 MB including Xen code and
Domain 0 code; we also add an extra 16 KB of data at the
end to flush the NIC internal buffer. In addition, we use 7
KB as the packet size because it introduces the lowest net-
work delay; and more details of network delay can be found
in Section 6.5.

Fig. 3 shows the observed times of each breakdown oper-
ation in HyperCheck-I and HyperCheck-II. We can see that
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packet transmission time is the majority. Additionally,
HyperCheck-II spends more CPU cycles for preparing TX
descriptors because the same amount of code running in
SMM takes more time than in normal protected mode. This
is mainly due to the fact that 1) SMM operates in 32-bit
mode while a normal OS runs in 64-bit protected mode, and
2) SMM physical memory needs to be uncacheable to avoid
cache poisoning attacks [41], [42].

The sizes of different hypervisors and OSes may vary
(e.g., Linux running with KVM). HyperCheck is scalable to
measure other hypervisors and OSes, but it should expect
more performance overhead when measuring larger code
base systems. We measure the time delay for sending differ-
ent sizes of data in both HyperCheck-I and -II where the
packet size is 7 KB. The results are shown in Fig. 4. We can
see that the time increases almost linearly along with the
size of memory in both prototypes.

6.5 Network Packet Size Analysis

To optimize the network time delay for our system, we
measure the packet transmission time by varying the
packet size for sending a fixed amount of memory. The
memory size is about 2.8 MB including Xen code and
Domain 0 code. We range the packet size from 1 to
16 KB on both HyperCheck-I and HyperCheck-II. Fig. 5
shows the results. When the packet size is less than 7
KB, the transmission time is about constant. However,
when the packet size increases to 8 KB, the overhead
increases dramatically and remains constant after that.
The reason is that the internal NIC transfer FIFO buffer
size is 16 KB for our network card. Therefore, when the
packet size becomes 8 KB or larger, the buffer cannot
hold two packets at the same time, which introduces
the delay.

Table 2 shows the time measurements on both the target
machine and the monitor machine for variable packet sizes
ranging from 3 to 11 KB in HyperCheck-II. The total amount
of data transferred is 2,897 KB, including Xen code, Domain
0 code, and 16 KB for flushing the internal NIC buffer. The
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sending time is measured on the target machine in Hyper-
Check-II; the receiving time and processing time are mea-
sured on the moniter machine. The receiving time
represents the period between the time when the first
packet arrives and when the last one arrives, and it is mea-
sured by tcpdump. To process the data, we use a customized
program on the monitor machine to compare the Xen code
and Domain 0 code byte by byte, and it takes about 21 mil-
lion CPU cycles. To optimize the time delay on the monitor
machine, we can process the packets while receiving them.
In this case, the total time delay on the monitor machine
will be bounded by the receiving time because receiving
packets takes more time than processing packets.

6.6 System Overhead

We also measure the overall system overhead incurred by
different sampling intervals of HyperCheck-II. In this exper-
iment, we run the UnixBench [43] suite without our system
in place. Next, we run the benchmark with HyperCheck-II
enabled at several different time intervals ranging from
0.0625 to 5 seconds using Global Standby Timer (GP0) on
the southbridge to periodically trigger an SMI. We then cal-
culate the overhead as a ratio with and without the system
in place. In this experiment, we transfer Xen and domain 0
code (2,881 KB) and use 7 KB as the packet size. Fig. 6 shows
the result of the overhead. In general, HyperCheck-II intro-
duces a low overhead. It causes 2 percent overhead when
trigging SMI every 5 seconds and 11 percent overhead with
a 1-second sampling interval.

6.7 Comparison with Other Methods

HyperGuard [38] suggests using SMM to read the mem-
ory and hash it on the target machine. Flicker [44] is a
TPM-based approach that can be used to monitor the
integrity of the kernels. We compare our method with
them, and Table 3 shows the results. We can see that the
overhead of HyperCheck is one order of magnitude
lower than HyperGuard and the TPM-based method. In
HyperGuard, it must hash the entire data to check its

TABLE 2
Time Measurements for Variable Packet Sizes in HyperCheck-Il

Packet size (KB)

3 4 5 6 7 8 9 10 11

Sending time on target (million CPU cycles)
Receiving time on monitor (million CPU cycles)
Processing time on monitor (million CPU cycles)

77 77 76 76 76 99 99 99 98
87 8 8 8 86 114 114 114 114
21 22 21 21 21 20 21 21 21
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integrity, while HyperCheck only hashes a random por-
tion of the data and then sends the entire data out using
an Ethernet card. For the TPM-based method, the most
expensive operation is the TPM quote, which takes
972 ms. Although HyperCheck needs TPM in SRTM pro-
cess to secure the BIOS, it does not require TPM at run-
time. Once the SMM is securely set up, HyperCheck
leverages SMM to perform its integrity checking, while
Flicker requires TPM operation for each check. Addition-
ally, an overall comparison between HyperCheck and
other methods is shown in Table 4. In summary, Hyper-
Check can monitor both memory and registers with a
lower overhead.

7 SECURITY ANALYSIS AND LIMITATIONS

HyperCheck aims to detect modifications to the static code
and control data of the hypervisors or OS kernels. It uses
the SMM and a dedicated NIC card to read the physical
memory via DMA and then validates the results on a moni-
tor machine.

7.1 Address Binding Validation

Some previous works rely on the symbol table to find the
virtual address of the kernel code and data. Nonetheless,
there is no binding between the virtual addresses in the
symbol table and the actual physical addresses of these
symbols [3]. However, HyperCheck validates this binding
by checking CPU registers. In order to explain how Hyper-
Check overcomes this problem, we use the IDT table as an
example. One potential attack is to modify the IDTR register
and point to another address (copy-and-change attack). The
malware can then modify the new IDT table and keep
the old one untouched. Another potential attack is to
keep the IDTR register untouched, but modify the page
tables of the kernel so that the virtual address in the IDTR
will actually point to a different physical address.

TABLE 3
Comparison on Time Overhead

Code base (Size:MB) HyperCheck HyperGuard Flicker
Linux (2.0) 31 ms 203 ms 1022 ms
Xen+Dom0 (2.7) 40 ms 274 ms >1022 ms
Window XP (1.8) 28 ms 183 ms >972 ms
Hyper-V (2.4) 36 ms 244 ms >1022 ms
VMWare ESXi (2.2) 33 ms 223 ms >1022 ms
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TABLE 4
Comparison on Capability and Overhead
Memory Registers Overhead
HyperCheck X X Low
HyperGuard X X High
Copilot X Low
Flicker X X High

HyperCheck can detect these attacks by checking CPU
registers in SMM. The value of the IDTR register should
never change after booting; otherwise, SMM sends a warn-
ing via the Ethernet card to the monitor machine. Thus,
HyperCheck can detect copy-and-change attacks by check-
ing IDTR value. Furthermore, we use the CR3 register to
detect page table changing attacks. Using the CR3 register,
HyperCheck can find the actual physical address for a given
virtual address. The offset between the virtual address and
the physical address should always be static. If the offset
changes, it means the CR3 or page tables have been altered,
and HyperCheck sends a warning message to the monitor
machine. Moreover, PCI devices, including the NIC card
itself, can be cheated and redirected to get a different map-
ping of the physical memory [45]. We can prevent these
attacks by storing a correct PCI configuration space in
SMRAM and then comparing it to current PCI space while
running in SMM.

7.2 Network Card Attacks

Though the network driver is running in the protected
SMM, the firmware of NIC could be malicious, too. For
instance, an attacker may flash the NIC firmware with a
malicious one after compromising the OS. After that, the
malicious NIC firmware can modify the packets to avoid
detection. In addition, Duflot et al. [46] demonstrated that
attackers can take full control of the OS by exploiting a vul-
nerability in NIC firmware. In order to defeat these attacks,
we can store a hash of original NIC firmware in the SMRAM
and verify its integrity in the SMI handler before using the
NIC. It would require us to update the hash value for new
benign NIC firmware patches.

We do not use IOMMU in HyperCheck because our test-
beds do not support it. However, the design of HyperCheck
is compatible with IOMMU. We can configure IOMMU to
allow the dedicated NIC to access the whole physical mem-
ory in Coreboot during system booting. To prevent mali-
cious attacks that misuse IOMMU to manipulate or disable
NIC, we can check the current state of IOMMU settings in
SMM, similar to checking PCI configuration space.

Moreover, to prevent replay attacks, we use a key to ran-
domly hash a portion of the data and then send them out to
the analysis module. Since the secret key is locked in the
SMRAM, the attacker cannot get to it to generate the same
hash. Attackers can still disable the Ethernet card or the
SMM code in a denial-of-service attack; however, the moni-
tor machine can easily detect such an attack.

An attacker may try to launch a fake reboot attack to get
the secret key from the monitor machine. It can mimic the
SMM NIC driver and send a request for a new key. We
have two solutions to prevent this attack. First, we could
use dynamic root of trust for measurement (DRTM)-based
remote attestation to verify the running state of the target
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machine [27]. We only need to verify whether the OS has
been started or not. If it is already started, the monitor
machine should refuse to send the key. If the target machine
does support the DRTM, the second method is to send
another reliable reboot signal to the target machine to make
sure the SMM code is running whenever the target machine
asks for the key.

7.3 SMM and BIOS

HyperCheck relies on SMM to check system integrity, and it
assumes SMM code is trusted. Fortunately, to the best of our
knowledge, there is no generic way to bypass SMM protec-
tion with locked SMRAM. Once the D _LCK bit is set, the
SMM code cannot be modified until system reboot. SMM
rootkits proposed by Embleton et al. [47] can have ring -2
privilege and serve as a keystroke logger, but it only works
with unlocked SMRAM. However, all of the post-2006
machines have locked the D_LCK bit during system booting,
and it is a major reason for us to develop HyperCheck-II,
which locks SMRAM after booting. In addition, Wojtczuk
and Rutkowska [41] demonstrate how to modify SMM mem-
ory via Intel CPU cache poisoning due to a hardware design
flaw. By manipulating CPU MTRR registers, the attacker can
make the CPU execute the SMM code from cache instead of
DRAM. Thus, the attacker can bypass the SMRAM protec-
tion and successfully run the code in cache with SMM privi-
lege. The same vulnerability was also discovered by Duflot
et al. [42]. Fortunately, Intel has cooperated with BIOS ven-
dors and fixed this architectural vulnerability.

Though SMM is not designed for security purposes, we
leverage SMM to assist the integrity monitoring. We want
to emphasize that SMM is the mechanism that essentially
provides an isolated computing fabric and the hardware
support for meeting HyperCheck’s needs. Our prototype
leverages the isolation principles currently implemented by
SMM, but this does not mean that the HyperCheck architec-
ture must use SMM. In terms of future hardware support,
we are essentially demanding a CPU that provides a dedi-
cated mode for security purposes.

Since SMM code is loaded from the BIOS, we need to pro-
tect the BIOS from malicious modification. Signed BIOS
update enforcement can protect against malicious writes to
the flash chip. Intel chipsets provide hardware registers to
support this mechanism (Protected Range Registers and
BIOS_CNTL register). Furthermore, this method requires
that the BIOS update routine is securely implemented. How-
ever, researchers [48] have demonstrated that this access
control can be bypassed by exploiting a vulnerability of the
BIOS updating process. To further protect the BIOS code, we
can use Static Root of Trust for Measurement to check the
integrity of the BIOS when system boots up [27]. As sug-
gested by Butterworth et al. [48], this method requires that
Core Root of Trust for Measurement (CRTM) is trusted so
that it can perform the self-measurement of the BIOS.

7.4 Multi-Core Platforms
Although HyperCheck is implemented on a single core plat-
form, SMM is able to deal with multi-core processors as

well. Since each core has its own MSR registers to define
SMRAM, each core can have its own SMI handler. When an
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SMI is generated, all of the cores on the platform are
switched to the SMM. However, multi-core mode introdu-
ces a security concern in the HyperCheck system. When one
core transmits the network packets, the other ones may be
able to manipulate the memory or NIC card to hide attack
traces. One solution is to let other cores remain in SMM
until the core executing HyperCheck code finishes. Another
more efficient way is to let one core execute HyperCheck
code while other cores resume their normal operations. The
latter approach needs to carefully handle inter-core commu-
nication and prevent memory modification between cores.
SICE [49] has demonstrate this method on AMD processors.

When the memory mapping of the hypervisor does not
hold the three properties (linearity, stability, perpetuity),
the current version of HyperCheck cannot work correctly.
Moreover, it is still a challenge to check the integrity of the
dynamic components of the Hypervisor or OS kernel. We
will address these problems in the future.

8 RELATED WORK

Protecting software from integrity attacks using hardware-
assisted techniques is not new; researchers used a special-
purpose PCI device to acquire the physical memory either
for rootkit detection [18], [50] or for forensic purposes [51],
[52] in the past. Copilot [18] employs a special PCI device to
poll the physical memory of the host and send it to an
administrator, station periodically. In HyperCheck, we do
not require specialized hardware—only an out-of-the-box
network card. We also offer a complete view of the CPU
register states. Such a view is important to prevent copy-
and-change attacks that can mislead the PCI card to scan
the wrong regions of memory and report erroneously that
the system is not compromised. Similar to HyperCheck,
SMMDumper [52] leverages SMM and the PCI network
card to perform acquisition of volatile memory of the run-
ning system. The purpose of SMMDumper is forensic analy-
sis, and it needs to transmit the whole physical memory of
the running system, while HyperCheck only transfers the
critical memory sections for integrity checking.

Another closely related work is HyperGuard [38], which
suggests using SMM in the x86 CPU to monitor the integrity
of the hypervisors. HyperCheck has a similar goal, but it can
outsource the state snapshot by using a network card. This
results in a drastic performance improvement of the system,
reducing the system busy time from seconds to millisec-
onds. Another difference is that the monitor machine in the
HyperCheck system can be used to detect the DoS attacks
against the SMM code.

HyperSentry [15] uses an out-of-band channel (Intelli-
gent Platform Management Interface (IPMI) commonly sup-
ported on server platforms) to trigger SMI, and adopts SMM
to protect its base code on critical data. HyperCheck does
not need IPMI support and could work on both desktops
and servers. Another difference in HyperSentry is the loca-
tion of the analysis module, which is on the target machine,
while HyperCheck performs integrity analysis on a separate
machine, which can reduce the workload of the target
machine.

Vigilare [53] is a system bus traffic monitor on a sys-
tem-on-a-chip (SoC) platform for checking kernel
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integrity. It can effectively prevent the evasion attack in
polling systems by using event-driven monitoring mech-
anisms. However, Vigilare only works on the SoC plat-
form and requires extra hardware support (i.e., to
duplicate system bus traffic to the verifier) in desktops
and servers, while HyperCheck leverages an existing
hardware feature (SMM) in the x86 CPUs.

HyperWall [54] architecture achieves hypervisor-secure
virtualization by using hardware to isolate a VM’s memory,
protecting guest VMs from wuntrusted hypervisors.
Although HyperCheck and HyperWall are both hardware-
assisted systems, they have different threat models. Hyper-
Check provides integrity checking of both the hypervisor
and the operating system, while HyperWall only protects
the guest VMs from a malicious hypervisor. In addition,
HyperWall requires new hardware components in the
microprocessor, while HyperCheck requires no hardware
modifications.

Flicker [44] uses a TPM to ensure a minimum Trusted
Code Base, which can be used to detect modifications to the
kernels. Flicker requires hardware features such as Dynamic
Root of Trust Measurement and late launch, which have
been widely supported in new computers. HyperCheck uses
the SRTM to secure the booting process, but it does not need
any TPM operation at runtime. To reduce the overhead of
Flicker, TrustVisor [17] has a small footprint hypervisor to
perform cryptography operations. However, all of the legacy
applications should be recompiled and ported to work on
TrustVisor. TrustVisor also requires the DRTM support.
SecureSwitch [55] is a BIOS-assisted system for secure
instantiation and management of trusted execution environ-
ments. It has the same TCB (BIOS and hardware devices)
with HyperCheck, but it is designed for different purposes.

Another branch of research focuses on improving the
security of the hypervisor by adding hooks [13], [56], [57]
and enforcing security policies in virtual machines [54],
[58]. These methods are hypervisor-specific and run at the
same level as the hypervisor. HyperCheck monitors the
hypervisor state from a lower level and thus is complemen-
tary to these mechanisms.

Furthermore, there is a plethora of research towards pro-
tecting the Linux kernel [6], [59]. Baliga et al. [50] use a PCI
device to acquire the memory and automatically derive the
kernel invariance. Currently, we discover the kernel invari-
ance manually, but we could integrate their techniques into
our system smoothly. Litty et al. [3] develop a technique to
discover the address of key data structures that are instanti-
ated during runtime by relying on processor hardware and
executable file specifications. It assumes that the underlying
hypervisor can be trusted. Instead, HyperCheck first obtains
the virtual addresses of those symbols through the symbol
file, and then calculates the physical addresses through CPU
registers. Therefore, HyperCheck can get the correct view of
the system memory even if the underlying OS or hypervisor
is compromised and page tables are altered. Some other
researchers [1], [2], [60] also depend on the integrity of the
hypervisor to protect the kernel. Our work is complementary
to those mechanisms and can be employed as a meta-protec-
tion mechanism to guard the integrity of OS-level defenses.
AppCheck [61] is a follow-up work on HyperCheck to check
the integrity of application code.
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9 CONCLUSIONS

In this paper, we introduce HyperCheck, a hardware-
assisted tampering detection framework, that aims to pro-
tect the code integrity of software running on commodity
hardware. HyperCheck relies on the CPU System Manage-
ment Mode to securely generate and transmit the state of
the protected machine to an external machine. HyperCheck
does not rely on any software running on the target machine
beyond a trusted BIOS. Moreover, HyperCheck is robust
against evasion attacks and DoS attacks.

To demonstrate the feasibility of our approach, we
implemented two prototypes on two testbeds. Hyper-
Check-I is implemented on real hardware with an original
closed-source BIOS, and HyperCheck-II is based on a phys-
ical machine with open-source Coreboot. Our experimental
results indicate that we can successfully identify alterations
of the control data and code on protected systems. Overall,
HyperCheck operation is lightweight, and it can complete
one round of integrity checking in less than 90 million
CPU cycles.
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