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Abstract. With the increasing adoption of the container mechanism in
the industrial community, cloud vendors begin to provide cloud container
services. Unfortunately, it lacks a concrete method to evaluate the secu-
rity of cloud containers, whose security heavily depends on the security
policies enforced by the cloud providers. In this paper, we first derive
a metric checklist that identifies the critical factors associated with the
security of cloud container services against the two most severe threats,
i.e., the privilege escalation and container escaping attacks. Specifically,
we identify the metrics which directly reflect the working conditions of
the attacker. We also extract the metrics essential to achieve privilege
escalation and container escaping attacks by investigating the feasible
methods for breaking the security measures, including KASLR, SMEP
and SMAP, etc. Since memory corruption vulnerabilities are frequently
adopted in the privilege escalation attacks, we collect a dataset of the
publicly released memory corruption vulnerabilities to assist the evalu-
ation. Then, we develop a tool to collect the metric data listed in the
checklist from inside the cloud containers and perform security inspection
on five in-service commercial cloud container services. The results show
that some containers are enforced with weak protection mechanisms (e.g.,
with the Seccomp mechanism being disabled), and the KASLR could
be bypassed on all five cloud containers. However, even after obtaining
ROOT privilege in a container, attackers still can hardly escape from
the container on the public cloud platforms, since the necessary files for
crafting or compiling a loadable kernel module for the host OS are inac-
cessible to the container. Finally, we provide some suggestions to improve
the security of the cloud container services.

Keywords: Container · Privilege escalation · Kernel security
mechanisms · CPU Protection Mechanisms · Container escape

c© Springer Nature Switzerland AG 2020
W. Susilo et al. (Eds.): ISC 2020, LNCS 12472, pp. 160–177, 2020.
https://doi.org/10.1007/978-3-030-62974-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62974-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-62974-8_10


Evaluation on the Security of Commercial Cloud Container Services 161

1 Introduction

Container technology is increasingly adopted by the industrial community [38].
The primary reason is the flexibility introduced by the container orchestration
tools such as Docker [11] and Kubernetes [15], which facilitate the deployment,
scaling, and management of the containerized applications. The cloud vendors
also begin to provide container services, e.g., Amazon Fargate [7], Google GKE
(Google Kubernetes Engine) [12], etc. As a lightweight alternative to the tradi-
tional virtual-machine based cloud service, the cloud container service allows the
container instances from different tenants to be executed on the same physical
or virtual server.

As an OS-level virtualization technology implemented in the Linux kernel, all
containers running on one host share the same Linux kernel. There is a consensus
that the container mechanism is less secure than the traditional virtualization
technology like Xen [17] and KVM [35], etc., due to its kernel-sharing feature.
However, it lacks a concrete method to evaluate the security of the cloud con-
tainer services. Existing studies mainly focus on analyzing the security of the
containers running on the local platforms [16,19,27,37]. For example, XinLin
et al. [27] provide a measurement study on the security of local Docker container
systems, where the processes inside the container are granted with default Docker
container permissions. Also, it assumes the attackers could configure portions of
the underlying execution environment (e.g., they can select to install a vulner-
able kernel system and obtain the image file and the source code of the kernel
system). However, execution environment of the remote cloud containers is con-
figured by the service providers and uncontrollable to the attackers. Therefore,
security evaluation on the local container platforms could not completely reflect
the security of various remote cloud containers, which are deployed with a ded-
icated kernel system and protection policies.

In this paper, we provide a metric-based method to evaluate the security of
cloud container services against the privilege escalation attack (i.e., obtaining
ROOT privilege from inside the container) and the container escaping attack,
which will seriously damage or even invalid the isolation provided by container
mechanism. We first investigate the critical factors associated with the secu-
rity of a cloud container service and derive a metric checklist to facilitate the
security inspection. Specifically, we identify the essential metrics associated with
the cloud containers’ execution environment, which directly reflect the working
conditions of the attackers, including version and updating time of the underly-
ing kernel system (they partially illustrate vulnerability of the underlying kernel
system), permissions assigned to the container tenants, and the protection poli-
cies configured by the service provider (e.g., whether security measures including
Seccomp [10], MAC, KASLR [21], SMEP [4] and SMAP [20] are enabled). We
also extract the metrics critical to achieve privilege escalation by investigating
the feasible methods for breaking the security measures, which are commonly
adopted to defend against privilege escalation [27]. To aid our analysis, we collect
a dataset of publicly released memory corruption vulnerabilities, which are nec-
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essary for the privilege escalation attacks. Meanwhile, we analyze the procedure
to achieve container escaping and identify the related critical metrics.

Then, we develop a tool to examine the identified metrics listed in the check-
list and perform a detailed evaluation on the security of five popular cloud
container services1. We first explore the execution environment of the cloud
container services, and the results show that kernel systems of four container
services are last updated in 2019. However, we find two cloud container services
have assigned ROOT privilege to the container tenants (i.e., ccs4 and ccs5 in
Table 1). The CPU mechanisms (i.e., SMEP and SMAP) are enabled by almost
all container services, while the kernel protection mechanisms (i.e., MAC, Sec-
comp, and KASLR) are not effectively leveraged. For example, Seccomp and
MAC are both enabled by only one service, and the KASLR is enabled by two
services.

Investigation on the possibility of privilege escalation attack is performed on
the containers that are not assigned ROOT privilege (i.e., containers provided
by cloud services ccs1, ccs2 and cc3 in Table 1). The results show that KASLR
could be successfully bypassed on all services. However, since the underlying
kernel system of the three cloud containers was updated recently, we fail to find
feasible memory corruption vulnerabilities (and exploits) to bypass SMEP and
SMAP on ccs1, cc2 and ccs3. Experiments on the container escaping attacks
show that container escaping is difficult on the public cloud platforms even after
the attackers obtain ROOT privilege. Since there are no user-space APIs (e.g.,
system calls) for a process to transfer from one container to another container,
container escaping should be achieved by modifying the kernel data. The most
generic method to get into the kernel is through a kernel module. However, the
Linux system only allows a matching kernel module (e.g., the module compiled
with the same header files and symbol table as the running system) to be loaded.
In our experiments, container escaping fails on the cloud containers, since the
necessary files for crafting or compiling a loadable kernel module are inaccessible
to the attackers inside the containers.

We have reported our findings to five cloud service providers, and received
responses from most of the providers. After our suggestion, cp2 disabled the
Intel TSX (Transactional Synchronization Extensions) [13] mechanism on the
ccs2 service to prevent the bypassing of KASLR, and cp5 replied that they
would constrain the tenant’s capability and enable the KASLR to enhance the
security of ccs5.

In summary, we make the following contributions:

– We present a metric-based method and design a tool to evaluate the secu-
rity of cloud container services against the privilege escalation and container
escaping attacks.

1 As per requirement of some service providers, we use cp1, cp2, cp3, cp4, cp5 to
represent the five cloud providers, and ccs1, ccs2, ccs3, ccs4, ccs5 to represent the
five cloud container services in the evaluation results.
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– We construct a dataset of memory corruption vulnerabilities which are usually
necessary when achieving privilege escalation from inside the container to
support the work of our evaluation tool.

– We evaluate the security of five in-service cloud container services in detail,
and identify the major obstacles for the attackers to escape from public cloud
containers. We also provide the suggestions to improve the security of the
cloud container services based on our evaluation.

2 Background

2.1 Container Mechanism

Container [28] is a lightweight OS-level virtualization technology implemented in
Linux kernel, which provides isolation for one or more Linux processes. The pro-
cesses running inside a container feel like they own the entire system, although
containers running on the same host share the same Linux kernel. Isolation
between the containers is achieved through two kernel mechanisms, i.e., Names-
pace [9] and Cgroup [6]. There are seven types of namespaces, i.e., user, uts, net,
pid, mnt, ipc and cgroup. Each namespace isolates a specific kernel resource for
one container. For example, the mnt namespace provides an isolated file system
for a container through isolating the file system mount points. After isolation,
the files in different mnt namespaces are not visible to each other and cannot
affect each other. Compared to the Namespace mechanism that concerns kernel
data isolation, the Cgroup mechanism focuses more on performance isolation
by limiting the amount of resources (e.g., CPU, memory, devices, etc.) that
a container can use. Docker [32] is a pervasively used container engine that
facilitates the management of the containers, such as container creating, delet-
ing, starting and stopping, etc. Popular cloud providers also begin to provide
the multi-tenancy cloud container services, such as Amazon Fargate [7], Google
GKE (Google Kubernetes Engine) [12], etc. The underlying technology of these
services is the container mechanism. Therefore, several tenants might share the
same Linux kernel.

2.2 Linux Kernel Security Mechanisms

Isolation enforced by the container mechanism is invalid, if a process inside
the container compromises the kernel or escapes the container boundary to
enter another container. Therefore, several Linux kernel security mechanisms
are adopted to constrain the capability of the processes inside the containers,
such as Kernel Address Space Layout Randomization (KASLR) [21], Capabil-
ity [8], Seccomp [10] and Mandatory Access Control (MAC) mechanisms. The
KASLR mechanism makes the Linux kernel boot up at a random base address
rather than at a fixed base address. As such, the attackers could not obtain
addresses of critical kernel functions, which are usually necessary to compro-
mise the kernel. Capability is a privilege decentralized mechanism, which divides
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the superuser privilege (i.e., ROOT privilege) into 38 units, known as capabil-
ities. Each capability represents a permission to operate some specific kernel
resources. The Seccomp mechanism constrains the system calls a process can
invoke. SELinux [30], AppArmor [1] are two MAC mechanisms frequently used
to enforce mandatory access control on the kernel resources.

2.3 CPU Protection Mechanisms

Two CPU protection mechanisms are also frequently used to protect the Linux
kernel, i.e., Supervisor Mode Access Prevention (SMAP) and Supervisor Mode
Execution Prevention (SMEP) [4]. SMAP prevents supervisor mode programs
from accessing user-space memory, while SMEP prevents supervisor mode pro-
grams from executing user-space code. SMAP and SMEP could be enabled by
setting the 21st and 20th bits of the CR4 register, respectively.

3 Metric Checklist for Container Security Evaluation

Before performing the security evaluation, we first derive a metric checklist that
identifies the critical factors associated with the security of cloud container ser-
vices. As a technology implemented in the Linux kernel, isolation introduced
by container will be seriously damaged or even invalid, if the processes inside
a container could obtain the ROOT privilege or escape the container bound-
ary. Therefore, we focus on investigating the security of cloud container services
against these two most severe threats, i.e., the possibility to achieve privilege
escalation and container escaping from inside the container. Specifically, we first
identify the metrics which directly reflect the cloud container’s execution envi-
ronment. Then, we investigate and summarize the feasible methods for breaking
the security measures including KASLR, SMEP and SMAP, which are com-
monly adopted to defend against privilege escalation [27]. Finally, we extract
the metrics essential to achieve container escaping.

3.1 Execution Environment Related Metrics

Security of the container services heavily depends on the execution environment,
including version and updating time of the underlying kernel system, permissions
assigned to the container tenants, and the protection policies configured by the
service providers. Version and updating time of the underlying kernel system
impact not only the probability of finding feasible memory corruption vulner-
abilities, but also the possibility to obtain a matching kernel image, both of
which are frequently leveraged in privilege escalation attacks [27]. Thus they are
very important to the security of container services. The permission information
directly reflects the ability of an attacker, which means the capabilities assigned
to container processes on Linux platforms. The protection policies signify the
difficulty of launching the attacks, which includes the configuration of both the
Linux kernel (see Sect. 2.2) and CPU protection (see Sect. 2.3) mechanisms,
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i.e., Seccomp, MAC, KASLR, SMEP and SMAP. As such, we introduce eight
execution-environment-related metrics into the checklist, i.e., kernel version and
updating time; capabilities assigned to a container tenant; and the policies of
Seccomp, MAC, KASLR, SMEP and SMAP.

3.2 Privilege Escalation Related Metrics

The key security mechanisms against privilege escalation are KASLR, SMEP
and SMAP [27]. KASLR prevents the attackers from guessing the kernel func-
tions addresses (e.g., commit creds() and prepare kernel cred() are two kernel
functions frequently used in privilege escalation attacks). SMAP and SMEP can
prevent the hijacked control flow from accessing the user-space data and execut-
ing the user-space code (shellcode). An attacker must bypass these mechanisms
to achieve privilege escalation from inside the container [27]. In the following,
we summarize the methods which could be used to bypass the KASLR, SMEP
and SMAP, and extract the critical factors for achieving the bypassing.

1) Bypassing KASLR. The KASLR mechanism has been introduced since
Linux kernel 3.14, which makes the kernel image decompress itself at a ran-
dom location during the booting time. It can be enabled by setting the CON-
FIG RANDOMIZE BASE option when compiling the kernel, and it has been
enabled by default since kernel 4.12. Without KASLR, the base address of the
kernel code will be configured at 0 × FFFFFFFF81000000. In theory, the number
of slots available to the KASLR mechanism for achieving base address random-
ization is 256 on the × 86-32 platforms and 512 on the × 86-64 platforms [21].
In general, there are mainly two approaches to achieve KASLR bypassing, i.e.,
reading sensitive files and launching cache-based side-channel attacks.

a) Bypassing KASLR through Reading Sensitive File. Two types of files might
be used to bypass KASLR. First, the dmesg file under the directory of
/var/log may contain kernel-address related sensitive information (e.g., the
kernel’s base address might be obtained by searching the keywords such as
“Freeing SMP” or “Freeing unused” in the dmesg file). However, we might
not be able to obtain exact addresses of the critical kernel functions (e.g.,
native write cr4()) with only the kernel’s base address, since the offsets of
the kernel functions (to the base address) vary when the kernel images are
compiled with different compilers (e.g., the gcc compilers of different ver-
sions) or different compiling options (e.g., the options defined in the .config
file). Therefore, in order to obtain the exact addresses, kernel images of the
running systems are also necessary. Second, the address of each kernel func-
tion could be obtained directly from the /proc/kallsyms file, if it is set as
readable to the user.

b) Bypassing KASLR through Cache-based Side-channel Attacks. Since the low
entropy of the KASLR’s implementation, cache-based side-channel attacks are
also frequently used to bypass KASLR. Basically, the attacks are launched
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based on the observation that it takes less time to access a content residing
in the cache than the one in the memory. And the most effective cache-based
side-channel attack for bypassing KASLR is called TLB-cache-based [23,24]
side-channel attack.

TLB-cache-based side-channel attacks are also known as double-page fault
attacks [23,24], and they are accomplished based on a feature of some Intel
CPUs. When a user program accesses a privileged kernel address, the processing
procedure will be slightly different for the mapped and unmapped addresses. As
illustrated in Fig. 1, when a mapped address is accessed, a TLB entry will be
created in the TLB cache before the kernel delivers a segment fault signal to
the user program (since the privilege check fails). But for an unmapped address,
no TLB entry will be created. Therefore, the attackers can deduce whether
a kernel address is mapped or not, by accessing the same address twice and
comparing the time duration of receiving the segment fault signal. As such,
the base address of the kernel image could be obtained by probing the whole
region of the kernel space. However, the time to execute segment fault handler
function is also counted into the duration (i.e., t1 and t2), and it is usually
far longer than the difference caused by TLB hit or miss. For obtaining stable
results, it is better to reduce the noise caused by the segment fault handler as far
as possible. Yeongjin Jang et al. [24] proposed a highly stable solution (named
DrK) by leveraging the Intel TSX (Transactional Synchronization Extensions)
instructions. With TSX, the CPU will directly inform the segment fault to the
user program without the attendance of Linux kernel, as such the noise caused
by segment fault handler is omitted.

Fig. 1. TLB-cache based side-channel attack to bypass KASLR. 1© Access a kernel
address p; 2© Receive a segment fault signal (since the privileged check fails) and
record the time duration for obtaining the signal (t1); 3© Access p again; 4© Record
the time duration for the second access (t2). When accessing a mapped address, a TLB
entry will be created in step 2©, and t2 will be smaller than t1 (since the TLB hit).
Or else, no TLB entry will be created, then t2 and t1 will be almost the same.
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2) Bypassing SMEP and SMAP. SMEP and SMAP are introduced into
the Linux kernel since version 3.0 and 3.7, respectively. In general, the attack-
ers can disable SMEP and SMAP by redirecting a corrupted kernel pointer to
the native write cr4() function through memory corruption vulnerabilities. For
example, with parameter 0x407f0, native write cr4() will set the 20th and 21st
bits of the CR4 register as zero (i.e., disabling the SMEP and SMAP). How-
ever, this method requires to leverage a memory corruption vulnerability in
Linux kernel, i.e., seeking out (and overwriting) a corrupted kernel pointer that
points to a function taking one and only one parameter. SMAP is sometimes
disabled by default, then the SMEP could be disabled similarly but with loosen
requirement of the corrupted kernel pointer (i.e., no additional requirement on
the parameters). Specifically, the attackers can craft a malicious Return Oriented
Programming (ROP) chain by concatenating exploitable kernel gadgets, and the
chain realizes the similar function of native write cr4() (i.e., setting CR4 regis-
ter). Then, they store the ROP chain as user-space data and redirect a corrupted
kernel pointer to execute a “stack pivot” instruction, which will put the address
of the ROP chain to the esp (Extended Stack Pointer) register and thereby make
the ROP chain being executed. Although stored as user-space data, the chain
could be read from kernel since SMAP is disabled. Also, the chain could be suc-
cessfully executed since it is constructed by concatenating exploitable gadgets
in the kernel space. However, the attackers need to bypass KASLR and obtain
the kernel image of the running system (which is necessary for obtaining the
accurate addresses of the exploitable kernel gadgets), before crafting a usable
ROP chain.

On the whole, five factors are critical in compromising KASLR, SMEP and
SMAP, which are the accessibility of dmesg and /proc/kallsyms, availability
of the TSX instructions, and the possibility to find feasible memory corruption
exploits and matching kernel images for the underlying Linux kernel system.
These privilege-escalation-associated metrics are also introduced into the check-
list.

3.3 Container Escaping Related Metrics

Although container escaping is easy on the local platforms after the attackers
obtain the ROOT privilege, it is not an easy task on the public cloud plat-
forms. There are no user-space APIs (e.g., system calls) for transferring a process
from one container to another container, and a process’ container attribute is
defined through the data field (i.e., nsproxy) of the kernel data structure (i.e.,
task struct). Therefore, container escaping could be achieved by modifying the
kernel data. In general, there are two ways to get into the kernel from user-space
after obtaining the ROOT privilege, i.e., finding and exploiting a feasible kernel
memory corruption vulnerability, and crafting a loadable kernel module. The for-
mer needs a feasible vulnerability. The later needs a compiling environment for
a kernel module or needs to bypass the verification of loading a kernel module.

Two verification will be performed before loading a kernel module, i.e., wheth-
er the module contains a Vermagic value matching the running kernel system,
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and whether the kernel functions and structures utilized in the module are
attached with correct CRC (Cyclic Redundancy Check) values [40]. Vermagic
is a unique string that identifies the version of the kernel system on which the
module is compiled. A kernel module could be successfully loaded when both
checks pass. Therefore, the attackers can craft a loadable kernel module by either
compiling it on the running systems (corresponding files such as kernel symbol
table and kernel header files, etc. should be accessible), or compiling an incor-
rect kernel module and substituting the Vermagic and CRCs values with the
correct ones. And kernel address of the memory accommodating each kernel
function’s (or structure’s) CRC value usually could be obtained by reading the
/proc/kallsyms file. For example, the address of kernel function A’s CRC value
is marked as kcrctab A in the /proc/kallsyms file. And the Vermagic value
could be derived from an existing loadable kernel module. As such, the attackers
could craft a loadable kernel module if they can find an existing loadable kernel
module and obtain the kcrctab * values.

Based on the analysis above, we introduce three container-escaping-
associated metrics into the checklist, which are the availability of the header
files, Vermagic value and CRC value associated with the underlying Linux ker-
nel system.

3.4 Memory Corruption Vulnerabilities

As illustrated in Sect. 3.2, when performing privilege escalation attack, the
attackers need to overwrite certain kernel memory through memory corruption
vulnerabilities in the Linux kernel, such as UAF (Use-After-Free), race condi-
tion, improper verification, buffer overflow, etc. It is pretty unlikely to patch all
vulnerabilities considering the large code size of the Linux kernel. Distribution
of memory corruption vulnerabilities partially reflects the possibility to achieve
privilege escalation from inside the containers. Therefore, we provide a statistic
analysis on the emerging and fixing pattern of the memory corruption vulnera-
bilities in this section.

1) Dataset. We collect a memory corruption vulnerability dataset by manually
analyzing the vulnerabilities published on the National Vulnerability Database
(NVD) between 2008 and 2018 [3]. NVD is the U.S. government repository of
standards based vulnerability management data. Each vulnerability is assigned
with a Common Vulnerabilities and Exposures (CVE) ID. First, we pick out all
vulnerabilities used to compromise Linux kernel by investigating the vulnerabil-
ity description on the NVD website. Then, we further find out the vulnerabilities
which could be exploited to corrupt kernel memory. On one way, we will include
all vulnerabilities which are explicitly stated the consequences of overwriting
kernel memory or gaining privileges (through memory corruption), e.g., the vul-
nerabilities which use vulnerable system calls to generate UAF (Use-After-Free),
race condition, buffer overflow, integer overflow, etc.

For the vulnerabilities without explicit statements of overwriting kernel mem-
ory, we analyze the work principles of the vulnerabilities to check whether they
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could be exploited to corrupt kernel memory. For example, the descriptions of
the vulnerabilities with ID CVE-2011-0709 and CVE-2017-8890 only state that
they will cause DoS (Denial of Service) attacks through NULL pointer derefer-
ence and DF (double free), respectively. Since dereferencing of a NULL kernel
pointer and double freeing of kernel memory have a high possibility of being
exploited to cause kernel memory corruption [5], so they are also counted. To
achieve a more accurate analysis, besides the descriptions on the NVD website,
we also refer to the reports associated with the vulnerabilities on other websites,
such as “SecurityFocus” [39] and “Red Hat Bugzilla” [14] (both websites are
utilized by the technical communities to track bugs and discuss the details of
the bugs).

Since our goal is to evaluate the possibility of launching attacks from inside
containers, we exclude those vulnerabilities which are difficult to be exploited
inside the container. For example, the vulnerabilities requiring the capabilities
(e.g.,CAP SYS ADMIN) or system calls (e.g., ptrace(), bpf(), keyctl(), clone(),
etc.) or operations (e.g., mounting a file system or image files) which are not
available in the containers.

2) Number of Memory Corruption Vulnerabilities. In total, we find 374
kernel memory corruption vulnerabilities, and the number of each year is illus-
trated in Fig. 2. 54% (202) of vulnerabilities are explicitly stated that they could
be exploited to corrupt kernel memory, while other 172 are identified by ana-
lyzing the vulnerabilities’ work principle. On average, there are 34 memory cor-
ruption vulnerabilities each year. In addition, target kernel versions of the vul-
nerabilities change synchronously along with the updating of the Linux kernel.
For example, the vulnerabilities published between 2012 and 2014 mainly target
at Linux kernel 3.x, while the ones published in 2018 mainly focus on Linux
kernel whose version is higher than 4.14. This shows that the memory corrup-
tion vulnerabilities are hardly to be cleared up even Linux kernel is continually

Fig. 2. Number of the memory corruption vulnerabilities
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updated. Therefore, there is always a possibility to achieve kernel memory over-
writing through kernel vulnerabilities.

As shown in Fig. 2, the number in 2017 is higher than others, and it is about
twice of the average value. It is possible due to the dramatic increase of the
total reported vulnerabilities in 2017 [31]. After further analysis, we find the
reasons for the surge of the vulnerabilities in 2017 are mainly two-fold. First,
the assignment process of CVE numbers was improved in 2017, where the CVE
numbers could be assigned in a matter of hours or days through filling a web
form. But before 2017, the assigning process is more tedious, and it takes far more
time. Therefore, the higher number of vulnerabilities in 2017 does not necessarily
mean that more vulnerabilities are discovered this year, but more researchers
apply for and get CVE numbers successfully. Second, with the popularization of
cloud computing, mobile Internet, and IoT devices in 2017, the generalization of
cyberspace attacks and the lack of security awareness lead to an increase in the
number of vulnerabilities [41].

3) Release Time of the Patches. Besides the vulnerability number, the time
duration for an exposed vulnerability to be patched is also critical to the attack-
ers. Therefore, we also analyze the patch release time for the 374 kernel memory
corruption vulnerabilities identified. Normally, the patch for each vulnerability is
also published on the NVD website, along with the vulnerability. In the situation
when more than one patches are released for a vulnerability, the earliest release
time will be utilized. Figure 3 depicts the statistics results of the patch release
time, which shows more than 97% of vulnerabilities are patched within 5 months
after the CVE numbers are assigned. And we are not able to find patches for 4
vulnerabilities, i.e., the ones labeled as “Unknown” in Fig. 3. We find patches of
about 52% of vulnerabilities are released before the CVE numbers are assigned.
The reasons might be two-fold. First, it takes a long time for the CVE number
to be reviewed and assigned, so there is a lag. The researchers who discover

Fig. 3. Statistics on the patch release time since the CVE assignment
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the vulnerability (or those who are aware of the vulnerability) have developed
and published a patch before the CVE number is assigned. Second, the CVE
assignment is intentionally delayed, as such the attackers could not utilize the
published vulnerability to launch zero-day attacks.

4 Evaluation and Analysis

In this section, we perform an evaluation on five popular cloud container services,
which are increasingly utilized to deploy industrial applications [36]. Particularly,
we develop a tool to facilitate the collection of metric data listed in the checklist
from inside the cloud containers. Most metric data could be obtained through
existing Linux commands, e.g., the capabilities assigned to a container process
could be fetc.hed through the getpcaps command, the kernel version could
be obtained through the uname -a command. We investigate the availability
of memory corruption vulnerability by checking the underlying kernel version
against the dataset collected from NVD (see Sect. 3.4). To explore whether the
kernel image and header files of the underlying kernel system are available, we
collect a repository which includes kernel image files and header files downloaded
both from the virtual machines of these cloud service providers and the Linux
Kernel Archives [2].

All container services have the concept of regions, i.e., the containers might
be deployed on servers located at different physical regions. For example, ccs5
allows a user to apply for a container from one of the three regions. As such, we
randomly select three regions for each container service and investigate whether
the configuration varies for the containers deployed on servers located at different
physical regions. The results show that containers deployed in different regions
share the same configuration. Therefore, we evaluate one representative container
for each service. All data associated with the container services were collected
in August 2019.

4.1 Container Execution Environment Detection

Table 1. Execution Environment of the Cloud Containers

Cloud
container
service

Kernel version Permissions Protection mechanisms

Version Update date No of Caps Seccomp MAC KASLR SMEP SMAP

ccs1 4.14 2019/06 14
√ × × √ ×

ccs2 4.14 2019/06 14 × √ √ √ √

ccs3 4.15 2019/05 14 × × √ √ √
ccs4 3.10∗ 2018/04 37† × × × √ √
ccs5 4.1.51 2019/02 38 × × × √ √

√
represents the protection mechanism is enabled, and × means it is disabled.

* The underlying kernel system is Red Hat.
† Since CAP AUDIT READ is not supported in this kernel system, 37 capabilities represent
ROOT privilege.
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Execution environments of the cloud containers are illustrated in Table 1.
First, kernel systems of all container services except ccs4 are last updated in
2019. However, we find ccs4 and ccs5 have already assigned ROOT privilege to
the container tenants. The CPU mechanisms (i.e., SMEP&SMAP) are enabled
by almost all container services, while the kernel protection mechanisms are not
effectively leveraged. For example, Seccomp and MAC are both enabled by only
one service, and the KASLR is enabled by two services. A study of the privilege
escalation vulnerabilities [27] shows that 11 exploits are blocked by Seccomp
and MAC. Furthermore, KASLR is a necessary step for privilege escalation.
Improperly setting of these mechanisms might let pass a series of exploits.

4.2 Privilege Escalation Evaluation

Table 2 depicts the possibility to achieve privilege escalation from inside the
cloud containers. Since ROOT privilege has already been assigned to the con-
tainer tenants of ccs4 and ccs5 as illustrated in Table 1, we investigate the possi-
bility of privilege escalation attacks on the other three cloud container services.
As illustrated before, the essential problems for achieving privilege escalation
are bypassing KASLR, SMEP and SMAP. From Table 2 we can see that the
KASLR could be successfully bypassed on all services through either reading
the /proc/kallsyms file or conducting TLB-cache based side-channel attacks
with the help of Intel TSX mechanism (The /proc/kallsyms file is also accessi-
ble on the containers provided by ccs4 and ccs5). As for the bypassing of SMEP
and SMAP, we can obtain the feasible kernel images to craft an ROP chain for
the containers provided by ccs1 and ccs2, since both services utilize the same
kernel images for the virtual machines and containers. However, since kernel sys-
tems of the three container services were updated recently, we fail to find feasible
memory corruption vulnerabilities (and exploits) to bypass SMEP and SMAP.

Table 2. Results of Privilege Escalation Attacks on the Cloud Containers∗

Cloud
Container
Service

Bypassing KASLR Bypassing SMEP&SMAP

dmesg /proc/kallsyms TSX Success Feasible
Exploits

Kernel
Image

Success

ccs1
√ √ × Y × √

N

ccs2
√ × √

Y × √
N

ccs3
√ × √

Y × × N√
represents the item is accessible (or available) to the attackers, and × means it is

inaccessible (or unavailable).
* “ccs4” and “ccs5” are not illustrated, since the containers of these two services have
already been assigned ROOT privilege.
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4.3 Container Escaping Evaluation

Table 3. Results of Container Escaping on the Cloud Containers∗

Cloud Container Service Compiling Environment Bypassing Verification

header files Vermagic(loadable module) CRC( kcrctab *)

ccs4 × √ ×
ccs5 × × √

√
represents the item is accessible (or available) to the attackers, and × means it is inaccessible (or

unavailable).
* “ccs1” , “ccs2” and “ccs3” are not illustrated, since lacks of feasible vulnerability for the containers
of these three services.

The results of container escaping are shown in Table 3. Due to the lacking of
feasible vulnerability, we use the second method to get into the kernel. Because
ccs4 and ccs5 have already assigned the container tenants ROOT privilege, we
have the capability to load module. We find the kernel header files are inaccessible
to the containers for both services, so we could not directly compile a loadable
kernel module. Meanwhile, we find the kcrctab * values are absent on the
containers of ccs4 (although the /proc/kallsyms file is accessible), while no
existing loadable kernel modules could be found in the containers provided by
ccs5.

5 Discussion and Future Work

We give some suggestions to enhance the security of cloud container services from
the following aspects. First, the kernel mechanisms including Seccomp, Capabili-
ties and MAC should be enabled and set with as strict policies as possible, which
might block a series of exploits. For example, in the study performed by XinLin
et al. [27], 67.57% of exploits are blocked by these kernel mechanisms. Second,
the KASLR mechanism should be effectively utilized by not only being enabled,
but also with the sensitive files (including dmesg, and /proc/kallsyms etc.) set
as inaccessible for the container tenants. Third, vulnerabilities in the underlying
kernel system should be patched as soon as possible, which will increase the
difficulty for the attackers to seek out a usable exploit. Fourth, it is better to use
the kernel images of different versions in the virtual machines from the ones in
the containers, if the service provider allows the tenants to apply for both virtual
machines and containers. This can prevent the attackers from crafting a feasi-
ble ROP chain for bypassing SMEP, and also raise the bar to achieve container
escape. We have supplied these suggestions to the cloud service providers.

It is more challenging to achieve privilege escalation on the public cloud
platforms than on local Docker platforms, since the lack of available exploits
on the specific underlying kernel systems. However, according to our research,
tens of memory corruption vulnerabilities are published each year, and there is
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a lag for the vulnerabilities to be patched. Therefore, by continuously collecting
the emerging exploits and tracking the updating states of the cloud container
services’ underlying kernel systems, it is possible for attackers to obtain ROOT
privilege from inside the containers. Security of the cloud container services heav-
ily depends on whether a vulnerable kernel system is updated in time and how
long is the lag. However, the problem has not been well studied yet. Also, more
persuasive evaluation could be obtained if the memory corruption vulnerability
dataset could be greatly enlarged. We leave them as our future work.

6 Related Work

There are a line of research works on the security of the container mechanism.
For example, M. Ali Babar et al. [16] compared the security between the contain-
ers based on different OS-level virtualization implementations, i.e., Rkt, Docker
and LXD. Thanh Bui et al. [19] compared the architecture between hypervisor-
based virtualization and container-based virtualization briefly, and they mainly
analyzed the docker internal security. XinLin et al. [27] used the vulnerabilities
to measure the security of the local container, and they analyzed the influence of
different capabilities on container vulnerability exploitation. Reshetova et al. [37]
theoretically analyzed the security of different OS-level virtualization implemen-
tations, i.e., FreeBSD Jails, Linux-VServer, Solaris Zones, OpenVZ, LxC and
Cells. Z Jian et al. [25] summarized two approaches to achieve container escape
and evaluated the proposed defense tool with 11 CVE vulnerabilities. A. Martin
et al. [29] classified the vulnerabilities of the container to five categories and
performed a vulnerability assessment based on the security architecture and use
cases of Docker. A. Mouat et al. [33] provided an overview of some container
vulnerabilities, such as kernel exploits, container breakouts and secret leakage.
Different from these works, we focus more on the security of the remote cloud
containers, which is more complicated and varies on different cloud container
platforms.

Many researchers also investigate the security of cloud container orchestra-
tion tools [18,34]. Alexander et al. proposed a method to detect the container
environment [26], i.e., comparing the number of processes returned by the sys-
info() system call and the “ps -ef” command. Xing Gao et al. [22] proposed
that the leaked host information will seriously threaten the security of the cloud
server. They also introduced a leakage channel detection method based on the
context and listed the leakage channels.

7 Conclusion

Cloud container service is widely used, so its security is particularly impor-
tant. In this paper, we provide a concrete method to evaluate the security of
cloud container services. We also perform a detailed evaluation of five in-service
cloud container services, i.e., whether the user can achieve privilege escalation
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from inside the cloud containers, and the possibility to achieve the cloud con-
tainer escaping. We find some incorrect configurations in them (e.g., two cloud
container services have assigned ROOT privilege to their container tenants by
default). Moreover, the KASLR mechanism could be successfully bypassed on all
five cloud containers. However, even after obtaining ROOT privilege in a con-
tainer, attackers still can hardly escape from the container on the public cloud
platforms. Finally, we give some suggestions to improve the security of the cloud
container services.
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