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Abstract

Proactive secret sharing deals with refreshing secret shares, i.e., redistributing the shares of a
secret to the original access structure. In this paper we focus on the general problem of redistributing
shares of a secret key. Shares of a secret have been distributed such that access sets specified in the
access structure ' (e.g., t-out-of-) can access (or use) the secret. The problem is how to redistribute
the secret, without recovering it, in such a way that those specified in the new access structure I'’
will be able to recover the secret.

We also adapt our scheme such that it can be used in the context of threshold cryptography and
discuss its applications to secure databases.

1 Introduction

Since it invention, several improvements and variants of threshold schemes [6, 34] and general secret
sharing [22] have been presented.

In proactive secret sharing schemes [30, 20] (see also [10]), shares of a secret are being refreshed
by the participants to avoid a mobile attack in which some computers of some participants have
been taken over temporarily (e.g., by a computer virus). The main motivation is that in normal
secret sharing once the shares of the secret have been distributed they remain fixed for the rest of
time. Proactive secret sharing is characterized by the fact that the access structure before and after
refresh remains (in essence) the same.

Another approach to a similar problem, called disenrollment, has been followed in [5], where some
secret share is being disclosed and one wants to create new shares using a public broadcast channel.

In some applications a refresh is not necessarily sufficient. Let us consider the following scenarios.
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e A secret has been distributed such that any 4-out-of-8 participants can recover the secret.
An enemy permanently takes over (either physically or virtually) two participants. Proactive
secret sharing can easily deal with such a situation. Indeed, one refreshes the shares of the
participants and excludes during refresh to communicate to the participants whose shares have
been corrupted. However, if the enemy is close to permanently take over two extra participants
the refresh will be of no avail. Instead the participants may want to redistribute their shares
such that any 2-out-of-4 can recover the secret. If more participants are being threatened they
may want to redistribute the secret again.

e If in a democratic organization that uses a 50% plus one threshold, the number of members
in the organization is sometimes increased. Proactive secret sharing is unable to give new
appropriate shares. A good example of such an organization is the United Nations, where the
number of members have increased by more than a factor 3 since its creation.

Other examples are given in Section 7.

To deal with such scenarios, we discuss how participants in the access structure can redistribute
the secret. We assume that shares of a secret key have been given such that only the subsets
of participants of P specified by the access structure I' can recover the secret. The goal of the
redistribution is that only the subsets of participants of P’ given by the access structure I'’ will be
able to recompute the secret, while those in I'\I'’ can no longer. We will distinguish the case where
insiders are assumed to be honest and the case they are not.

Of particular interest is the application of the redistribution of secret shares to threshold cryp-
tography [8, 11, 16] in such contexts as ElGamal [14, 31], RSA [12, 17] and DSS [28, 18]. In threshold
cryptography shares of a secret are (re)used in combination with a cryptosystem without leaking
anything new about the secret to outsiders and unauthorized insiders.

In Section 2 we very briefly sketch some definitions. In Section 3 we discuss the background and
notations we need to present our redistribution scheme. In Section 4 we present our main scheme. We
adapt it to threshold cryptography in Section 5 and to robust threshold cryptography in Section 6.

2 Definitions

Due to space limitations, and to allow enough details in the proofs, and inspired by the threatment of
definitions in [20], we only give an intuitive viewpoints to the definitions. Our results will be clearly
understandable without formal definitions. Since we discuss unconditionally secure scenarios, as well
as computationally secure ones, a good definition section would take excessive space.

We assume that the reader is familiar with secret sharing and refer the reader to the literature.
Let P be the set of participants. Let I'" be a subset of the powerset of P. Informally, a scheme is
a secret sharing scheme if the following condition is satisfied. For all keys k& € IC a tuple of s; € S;
(1 € P) exists, such that given a sub-tuple of s; where i € B € ' one can reconstruct k.

We now briefly survey security. There are different types of security. In perfect secret sharing
schemes the shareholders in B ¢ T learn nothing about the secret in an information theoretical sense.

A secret sharing scheme is zero-knowledge if without knowing the key k& one can simulate shares
of a set B ¢ I in expected polynomial time. Different levels of zero-knowledge exist. For details the
reader is referred to [19, 15].

From now on we assume that the access structure I' is monotone.

3 Background and notations

As mentioned in Section 1, we want our redistribution scheme to work for a variety of threshold
cryptosystems. To avoid longwindedness we use a unified way to describe several secret sharing that
have been used in the context of threshold cryptography.

We assume that the secret key k belongs to a set K, called the keyspace, and that the share
of participant i, called s; belongs to S;, the ith sharespace. As in [1], we assume that there are



operations + defined on £ and all §;. Without affecting the generality, regardless of K, we use
additive notation (as long as reasonable).

3.1 Linear secret sharing

An important class of secret sharing schemes [15, p. 676] (a generalization of [27, 29, 34]) is the one
in which the key k can be written as:

= Z YiB(si), where B € T and #; 3 is a homomorphism (1)
ie€B
from S;(+) to K(+), for any i € B. Note that |S;| > |K].

Although we do not require that S; = S;, we refer to this class, as the class of linear secret
sharing schemes. We refer to the homomorphisms 1; 5 as the scalars and (1) as a sum with weights
;5. We do not need the more general class of secret sharing schemes, called multiplicative [13] in
which ; g is a function.

It is clear that a linear secret sharing scheme is characterized by (Ip, K(+), S ,), where § is the
tuple of S; (i € P), and 9 is the tuple of ¢; g (i € B € I'). We silently assume an algorithm D used
to distribute the shares with an appropriate distribution.

3.2 Linear subshares

It should be observed that several threshold schemes, e.g., [34, 15, 13, 4] and Benaloh-Leichter’s [2]
general secret sharing scheme, generalized to any Abelian group K(+) in [15, p. 675] are linear. We
now survey these schemes without going into details.

In all these secret sharing schemes the key space corresponds to an Abelian group, which can
be viewed as a (left) R-module’ K (+) with (left) scalars from an appropriate commutative ring R.
(We use the definition in which there is an identity element with respect to the multiplication in the
ring [23].) Also, the share space S; = K% = K x K x --- x IC, where a; is an appropriate integer. We
call a; the i*h share-expansion (the rate [9] is 1/ max;(a;)). In other words, a share s; € S; can be
viewed as a row (or column when appropriate) of subshares, so?

si = (ki 0y, Kiy(1)s - - -5 Kiy(ai—1)) kiny € K. (2)

When there is no ambiguity we write s; = (k(o), k1), - -, K(a;—1));- For example, in Shamir’s scheme
K (+) is a vector space GF(q), which is a special type of module (any finite field is a vector space),
and a; =1ifl+1>g¢q.

The scalar ;¢ is a 1 x a; matrix

Yic = (Wi, (0) Wi,e,(1)s - - - » Wi, Cy(ai—1)) wicn) €ER (3)
such that

a;—1

Yicl(s Z wie,(n) - ki) = (Wi, 0)s Wire,(1)s - - Wieyas—1)) - (Kiso)> Kiy1ys - - Kigaie1)) T (4)

where the first multiplication is the external (scalar) multiplication in the module K(+4) and the
second one is similar to the scalar vector multiplication. If the share is a column of subshares, T’
indicates the transpose. If the share is a row of subshares, it corresponds to the identity transforma-
tion. Again, we refer to w; ¢ (x) as scalars, and to (4) as a sum with weights w; ¢ (). Also, if there
is no ambiguity we write 1; ¢ = (W), W(1)s -+ - »W(a;=1))iC

We call a linear secret sharing scheme (Ip, K(+),S ¢) satisfying (2-4) a sharing scheme with
linear subshares. It is characterized by (Ip, K(+),a,w), where a is the tuple of a; (i € P), and w
specifies all w; ¢ ) i € C € I and h € Z,,;. To indicate the correspondence between S and a, and
between ¢ and w we write (Ip, £(+),S ¢) (Ip,K(+),a,w).

For more details about each particular scheme consult Appendix A.

LA module has a similar definition as a vector space, but the scalars form a ring (instead of a finite field).
*We start with k(g to be compatible with [15].



4 Main scheme

Theorem 1 If

1. there exists a linear secret sharing scheme (Ip,K(+),8 ), and each participant P; in P has
received (with the appropriate distribution) a share s; € S; of a secret k € K,

2. for each i € P there exists a linear secret sharing scheme (T'b,, Si(+), 8171& )
3. K(+) is an Abelian group,

4. for each i and each C, where i € C € I', and for each j and each C', where j € C' € T'!, there
exist appropriate homomorphisms ¢;7c, and zp;- (i,0) such that i c and ; ; cry pseudo-commute,
1.€.,

Yico {/;i,(j,C’) =0 @Zg,(i,c) (5)

then any authorized set B € T' of non-faulty participants can redistribute, without computing k and
using secure channels, shares of k for the access structure ' with P’ the set of participants. The
resulting shares form a linear secret sharing scheme (Tp, K(+),8',4").

To prove this theorem we first describe the redistribution protocol.

Redistribution protocol

Step 1 Each participant ¢ € B views his own share s; € S; as a key and computes for each
participant j € P" ashare §; ; € S, ,j of the “key” s;, using (L'}, S; (+), Sz,l,b ). Participant
i sends (7, §;,;7) to j via a secure channel. We call §; ; a temporary share.

Step 2 Each participant j € P’, after having received (¢, §; ;) from each i € B, computes as share:

5= U m(5ig) (6)

ieB
Step 3 Each participant ¢ € P erases s; and all §; ; (j € P').

Proof. We now prove that the shares s’;, j € P’ allow an authorized set B’ € I'' to recompute the
secret k. We claim that k =35 ¢! B,( 1), what we now prove.
Since the share s; € §; comes from the hnear secret sharing scheme (Ip, K(+), S ,%), (1) is satisfied

for each B € T'. The shares §; ; originate from the linear secret sharing scheme (I'},, S;(+), S, 9,).
So, for any B’ € T'' we have s; = ZjeB, ¥;,(j,5y(8i,5). Substituting the last formula into (1) we
obtain:

k= Z¢i,8 Z /‘Zi,(j,B’)(gz,] = Z Z YiB ( B! (Si,j)> (¢:,5 is @ homomorphism)

i€B JjEB’ i€B jeB’

= Z sz B (wz (.87 (34,5) ) (K (+) is an Abelian group)
JEB' ieB

= Z Z%,BI (@(1 B) (85 ) (¢ic and 1@,(]-’0/) pseudo-commute)
JEB' i€B

= Z Vim (Z 1/13,(1 ) (i > (¢} g is a homomorphism)
JjEB' i€EB

= Z Ul g (s5) (accordingly to the definition of s in (6))
JEB! -



An important observation is that due to Step 1, §; ; is not only a share of s; for (I'p,, S;(+), Si,,),
but that (6) implies that §; ; is also a share of SJ using the access structure I' and participants P.

We discuss the security (e.g., perfectness) in Section 4.2. First we give examples that satisfy the
conditions in Theorem 1.

4.1 Class of examples

Theorem 2 If K(+4) is an Abelian group, the t-out-of-l threshold schemes in [34, 15, 13, 4] and
Benaloh-Leichter’s [2] general secret sharing scheme, generalized to any Abelian group KC(+4) in [15,
p. 675] satisfy the conditions in Theorem 1.

Proof.? We verify that the conditions of Theorem 1 are satisfied. Condition 1 is trivially
satisfied by using (Ip, K(+),8,¢) = (Ip, K(+), a,w) as sharing scheme with linear subshares, using
an appropriate (depending on T') scheme from the cited ones. When £ is the secret key7 we let the
resulting shares be s; with subshares (kq), k1), - - -, k(a; ,1)) where T is the matrix* transpose.

We now construct the sharing scheme with linear subshares (I'z,, S;(+), Sz,zﬁ ) = (Ch, Si(+),
a;,w;), where S;(+) = K% (+) and 7 € P, in such a way that Condition 4 will be satisfied. We use
as a building block (I4,, K(+),8',¢") = ([}, K(+),a’,w’) an appropriate aforementioned sharing
scheme with linear subshares to construct the share §;; € §m-, as we now explain. For each h
(0 < h < a; — 1), participant ¢ € P uses (I'5,K(+),a’,w’) to give shares of the “key” k() =
kiny € K, where k; () is a subshare of s;. We let the ™ (j € P') share of the “key” Ei (n)
be (ki,j,(h,o)vki,j,(h,l)v ceey ki,j,(h,a;.fl))v denoted as (k(h,O)vk(h,l)v RN k(h,a’j—l))i,j when there is no
ambiguity. Since this is done for each h (0 < h < a; — 1), we obtain a two-dimensional array of
subshares, which we call the share §; ;. So,

k(0,0) k(O,l) . ]{;(0@;71)
R k(l,o) k(l,l) . ]{;(1704;_71)
S’L’J N N . .
k(aﬁl,o) k(aifl’l) k(aifl,a’jfl) iy
k0,0 k.1 .. k(O,a’j—l)
_ k(l,o) k(l,l) ce k(17a/]__1)
K(a;-1,0) kia;—1,1) .. k(ai—l,a;—l) y

where k¢ m) € K (0 <h <a;—1,0 <m < a); —1). This defines §” = Sia" = (K‘“)”If = K%*% and
§; ; is a typical element of 3\” So a; = a’ (i.e., the tuple of expansions a} (j € P')), as is easy to
verify. Finally we define @;, by specifying that

T
Bi.erytmy (Ro,mys - Bai—1,m))ig) = (%cu(m(k(o,m)%~~-vwﬁ-,cm(m)(’f(aifl,m)))ij- (7)
Since (Dp, Si(+),8i,9;) = (Dps, Si(+),8:, @), (7) defines ¥, (j.cr)-

Condition 3 is assumed, so nothing needs to be proven. Before explaining why Condition 4 is
satisfied, we emphasize that in (I'5,, Si(+),a;,@;) we view 5; ; as a share of s;, the columns of 5; ;
as subshares, and the scalar action of 121\1-7(]-7@) on §; ; as the weighted sum of the columns in §; ;. We
will essentially prove that, using the access structure I' and participants P, one can view 3;; as a

8 A much shorter proof could have been given using bimodules and tensor product of modules [24]. Since the theory of
modules might not be so well known to the reader, we avoided to threat the subject this way.

“Very strictly speaking, entries to matrices must belong to a ring. To facilitate the reading we speak loosely of two
dimensional arrays as matrices.



share of sJ in which the rows of §; ; are the subshares and the w G.C) (8:,7) is defined as the weighted

sum of the rows in §; ;.
So, we define the sharing scheme with linear subshares (I, S%(+), S';, zp'j) = (Ip,Si(+),a’ W' i)s

J J > g0
where 8'; = 8; but viewing the rows as subshares, a’ = a, and

B5 (i0),n) (Bin0ys -+ s Khaim1))ig) = (Wi,C,(h)(k(h,O))v---vwi,C,(h)(k(h,a’j—l))>ij- (8)

This naturally defines 121 G-
To prove Condition 4, using (3) and (4) for (I'4/, Si(+),a;,@;) and (7), and dropping indices
i,7,C,C"in k; j (h,m)>wi,c,(n) and in w;. cr (m) when there is no ambiguity, we obtain

, T
a;—1 a —1
Yic (&J\i,(j,c') (§i,j)) = ic Z W) (K(0,m) Z W) (B(1,m))5 Z W) (B(as—1,m))
m=0 .
a;—1 an71 !
= > om0 (wgm) : k(h,m)) (due to (4) for (Tp, K(+), S.))
h=0 m=0
a;i—1 a;- -1
= Z Z (w(h) . ( k, m)>) (wny € R and K(+) is an R-module)
h=0 m=0
a’]-—l a;—1
= Z Z ((w(h) . ) h7m)) (K (+) is an R-module)
m=0 h=0
a’]-—l a;—1
= Z Z ((w{m) : ) (h m)) (R is commutative)
m=0 h=0
aj—l a;i—1
= (w(m) Z (w(h) kn, m))> (WEm) € R and K is an R-module)

a,fl a;—1 a;—1
= Ve ) ko) D Wik~ ki), - Z Wn) * K(h,a, —1))
2,J

h=0

)

_ 1
- ],C’ (w_] (3,C) 87‘7]

The last equation is due to (8), and the last but one is due to (3) and (4) for (I'},K(+),8',
’l,b,) &= (F’[;’vl(:(_‘_)va,vwl)' O

The attentive reader will have observed that the proof technique used in this proof is very similar
to the proof of Theorem 1. Here, the fact that R is commutative basically replaces, in the proof of
Theorem 1, the fact that ¢; ¢ and ; (; ¢y pseudo-commute.

4.2 Security

The following corollaries of Theorem 1 are easy to prove. Due to space limitation we state these
without formal details and we will defer the proofs to the final paper.

Corollary 1 If the linear sharing schemes (Up,, Si(+), S.,v,) are zero-knowledge, then the joint
view of (informally, information received by) the participants in B' ¢ T in the redistribution protocol
of Section 4, can be simulated. This implies that the participants in B’ € T have no information
about k.

This corollary can be extended to address the information theoretical aspects.



Corollary 2 If the linear sharing schemes (Ip, K(+), 8 2p) and all (T'5,, Si(+), S,,v;) are minimum
knowledge, then the joint view of (informally, information received by) the participants in B' € T’
in the redistribution algorithm of Section 4, can be simulated. This implies that the participants in
B € T obtain no new information, besides k.

We remind the reader that the dual of a monotone function f is obtained by interchanging the logical
AND and OR in f. Since a monotone access structure I' corresponds to a monotone function f, we
call the access structure corresponding to the dual of f the dual of ', and denote it as I'. Observe
that if T’ corresponds to a t-out-of-l access structure, then T’ corresponds to a (I — ¢ + 1)-out-of-I

threshold.

Corollary 3 When the linear sharing schemes (Ip, K(+),8,¢) and (I‘7§,,Si(+),3i,{ﬁi) are zero-

knowledge, it is sufficient that all i in a set B € T erase s; and 3;; (for all j in a set B e T'), to
guarantee that no subset B C (P \ P’) can recover the secret k.

5 Threshold cryptography variant

It is rather straightforward to use above redistribution algorithm in the context of threshold cryptog-
raphy, when the Abelian group K to which the secret belongs, is public. This is for example the case
in a discrete log setting, as in ElGamal [14, 31] and DSS [28, 18]. However, in the case of RSA [33]
the participants do not know the group K, being Z;(,,)(+), as mentioned in [12]. Therefore, we focus
on such a scenario.

5.1 RSA scenario

In the RSA scenario the secret key corresponds to d € Z5,,) C Zy(ny(+). In [12] the distributor of
the shares knows ¢(n). However, in Step 1 of the redistribution protocol the participant i € B gives
shares of s; but does not know ¢(n), and should not know it. Therefore, the distribution algorithm
described in [12] does not work.

If we can present a sharing scheme with linear subshares for the case the secret (i.e., the subshare
of d) is in Z4(,) but the distributor does not know ¢(n), then due Theorem 2, we are able to
redistribute shares. Therefore, from now on in this section, we focus solely on this problem without
rediscussing the context.

As in [17], we view the subshares of the secret d as integers. We observe that from an algebraic
viewpoint the sharing schemes with linear subshares in [15, 13, 4, 2] also work when K = Z, the
integers. But, as proven in [7], the sharing scheme cannot be perfect. However, in our context an
upperbound on the secret key d is known, namely the RSA public modulus n. Also if the shares of
d came from a distributor knowing ¢(n), the subshares will be less than n. This allows us to present
a solution.

5.2 Sharing a positive integer with known upperbound

We use as a primitive a (Ip, K(+), a,w), satisfying the conditions in Lemma 1.

Lemma 1 Let (Ip,K(+),a,w) be a secret sharing scheme with linear subshares in which R = Z.
If:

1. the values of a and w are independent of IC,

2. for any finite Abelian group K (1)-(4) are valid, and (Ip, K(+), a,w) is a secret sharing scheme,
then for all i € P and all h (0 < h < a; — 1) the subshare k; () is equal to:

b
Ky =} gy -k + Z W ()" T (9)
j=1



where k € K is the secret key, rj; € K, and u! (h),u;’(h) ; are integers which are independent of k and
r;. Also, if the binary length of w; ¢ (ny and the value of ax = Y, p a;, the total number of subshares,
are polynomially bounded in | = |P|, then the lengths of u', (h),u;’(h)j are also polynomially bounded®
i l.

Proof. Rather straightforward, see Appendix B. O

We now explain how to give shares of a secret k using the primitive in which we change the
distribution of the shares. Let p(|n|) be an appropriate polynomial in the length of n. We give
concrete values for p(|n|) in the final paper. When ¢ = 2 the scheme in [13] allows that p(|n|) is as
low as p(|n|) = 2 (asymptotically 1 + ¢/, where ¢’ > 0 is sufficient).

Share distribution algorithm

Assume k is the secret and it can be viewed as an integer in the interval [0,n — 1].

Step 1 For each j (1 < j <b), choose in the interval [0,77I" — 1] an integer r; uniformly random.
Step 2 Give each shareholder i € P subshares k; () defined by k and the chosen r; using (9).

It is rather straightforward to see that if the conditions in Lemma 1 are satisfied we obtain a
secret sharing scheme for a key in the interval [0,n — 1]. We now need to address the security of this
scheme.

Theorem 3 Let (Ip, K(+),a,w) satisfy the conditions in Lemma 1. If the number of shareholders,
I, is bounded by a polynomial in |n|, the binary length of w;c (n) and the value as are polynomially
bounded in l, and (Ip, K(+), a,w) is perfect for any finite Abelian group K, then the shares obtained in
the above share distribution algorithm are statistically zero-knowledge (i.e., they are close to perfect).

Proof. See Appendix C. a

The zero-knowledge t-out-of-I threshold schemes in [15, 13, 4] satisfy these conditions. For some
access structures, Benaloh-Leichter’s [2] general secret sharing scheme, generalized to any Abelian
group K(+) in [15, p. 675] also satisfies.

Above can easily be generalized to any bounded interval and to a more general setting than
strictly RSA.

Note

Observe that each time the redistribution protocol is used, the size of the shares grows. Indeed, the
first time the subshares are |n| bits long, but the subshares in s; ; are at least p(|n|) times longer.
This implies that the subshares in s will also be at least p(|n|)) times longer. So, if the algorithm is
used the next time, the upperbound n can no longer be used, so the bound n must be replaced by
the higher value, making the new shares even larger.

If the set K is known, as in DSS or ElGamal, the shares do not have such a memory effect. One
can wonder whether it is possible to avoid this memory effect in an RSA context.

6 Robust variant

Due to the linear nature, our results easily extend to robust threshold cryptography which is discrete
log based. In several verifiable secret sharing schemes (e.g., [31, 32]) and their application to robust
threshold cryptography based on discrete log [18], what is being communicated to verify the share
is f(s;), where f is a homomorphism from S; to an appropriate group, in general f is applied on
each subshare. This implies that we can talk about a more general share consisting of the secret s;

SEven if |T| is superpolynomial in [, b independent rows will exist in W, implying a polynomial time description of the

form (9).



and the public f(s;), i-e., regard the share as (s;, f(s;)). Due to the linearity of our schemes and
the fact that f is a homomorphism, all formulas apply. This implies that the shareholders in the
redistribution algorithm can give verifiable shares 3; ; of the verifiable shares s;. Since s’ is a linear
combination of §; ;, this results in verifiable shares 53- for the new access structure I'', using [32,
p. 137]. In the limited context of verifiable secret sharing, the results are not restricted to a discrete
log setting.

We also observe that the interactive method to achieve robust threshold RSA in [17] continues
to work after redistribution.

7 Application to secure databases

In distributed systems, there is often a need to enforce mutual exclusion which requires that at any
given time there is at most one group that can execute some critical operation. One method to
achieve mutual exclusion is static voting [3] which assigns a voteS to each node in the system; a
node can perform the critical operation if it can acquire a majority of votes from the nodes in the
distributed system. A drawback of this scheme is that failures can occur in such a way that no
node can perform the critical operation until these failures are repaired. A popular generalization of
the static voting scheme is dynamic voting [25] which reduces the chances of system halting in this
fashion. Unlike static voting, dynamic voting adjusts the necessary quorum each time the critical
operation is performed. The requirements of dynamic voting are identical to those considered by us
in this paper. Whenever a group of nodes decides to change its votes, the votes are adjusted such
that nodes outside the group can no longer form a majority.
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Appendices

A Specific secret sharing schemes

We very briefly survey some of the secret sharing schemes mentioned in Section 3 and explain how
they fit in the general description which we use in this text.

In Shamir t-out-of-I threshold scheme [34] /(4) corresponds to the additive group of a finite field
GF(q), a; =1 when ¢ > 1+ 1, and #; g is equal to the Lagrange coefficients

0—xa;
vis=]] ~ _;3 (10)
jeB "t J
JjFi

In its generalization [15] to any zero-knowledge homomorphic sharing scheme in which K(+) is an
Abelian group, a; = a > [, where a+ 1 is a prime. The homomorphisms v; g = Fy 01; g, where 1; g
is similar as in (10) and Fy maps (ko, k1, ..., ke—1) into ko € K (for details consult [15]).

In Benaloh-Leichter’s general secret sharing scheme (which can be generalized to any key space
K(+) as observed in [15, p. 675]) and the threshold schemes in [13] a secret share corresponds to
several subshares and a; is an appropriate integer. In these schemes ¢; g corresponds to selecting
one subshare. So v; 5 maps (k; (o), ki, 1), --»Ki(ai—1)) into k; 5, (8)), where f; is a function from
{C|ieC €T} to Z,,. In other words ¢; 5 = (w(0), W) -->W(a;—1))i,5 Where all w; 5 (») are zero,
except one which has the value one.

STt is possible to assign different weights to nodes.



From an algebraic viewpoint, the t; 3 in the secret sharing scheme in [4] are a combination of
these in [15] and [13].

B Proof of Lemma 1

All subshares for all participants in a (Ip, £(+), a,w) scheme can be viewed as one large column of

o; where 1 < j <as, as = ) ;cp @i, so that if we rename P = {1,...,[}, we have
i
o5 = ki (n), where j =h+1+ Y am. (11)
m=1

Then Equations (1)—(4) and (11) imply that

k
01
k 3
=W-| : , where Wir|xay, = (wg,;) such that ws ; = w; 5 (») and j = h+1+z A,
k Oay m=1
(12)
and BeT.

We assume that the first row in W corresponds to the set By and that I' = {By, Bs, ..., Bjr|}. If
R=17Z ie,wp; € Z, then VIWU = W' where W' is Smith’s normal form of W [21, pp. 384-387] and
V = (vir ;) and U = (us ;) are invertible in the matrix rings M|p|(Z) and M, (Z), respectively. So,
W' is a diagonal matrix, with diagonal elements the invariant factors (dy, d; -ds,d; -d2 - -+ dm, 0. .., 0),

where d;; > 0. We first prove that (dy ---dy) | E‘Fl vy j. Similarly as in [21, pp. 387-389)], one
obtains:
I .

E—llvld di 0 . 0 0 ... 0

Sl va gk 0 di-dp ... 0 0 ... 0

: ... ... ." ... ... " ... 0-1

E‘_lvm,]~ =lo o oo diod 0 o0 U] . (13)

S i -k 0 0 .0 0 ... 0 oo

I 0 0 0 0 0

E‘;:ll oy k

Since, (Ip,K(+),a,w) is a secret sharing scheme for any finite Abelian group /C, one can take
K = Zg,..q,,(+). Accordingly to the right hand side the row i’ in (13) gives EJ L Vi - k=0,
regardless of k. Indeed, (Ip,K(+),a,w) is a secret sharing scheme, so for all k¥ € K we have
S vy = 0, implying di -y | 1 v

The rest follows easily solving the equation (13) in the unknowns o from [21, pp. 387-389], using
the transpose. Defining b = ax, — m, this gives:

m T b
— E h= ’U'7h
oi = (“i’u'—ﬂ' : éh ) e Z“i’,mﬂ' Ty (14)
=1

where 7; can be any element in K. So, we obtain (9) in which (h),; 1S clearly an integer. ! (h) 18

also an integer, since the fractions in (14) are integers. The size of the integers follows from [26].
O

10



C Proof of Theorem 3

We first prove a technical lemma, which can be skipped in a first reading. Let {D;(z)} and {D2(x)}
be two families of random variables. When applying the same (deterministic) function on these
random variables, we denote the obtained families of random variables {f(D;)(x)} and {f(D2)(x)}
respectively.

Lemma 2 If the families of random variables {D1 ()} and {D2(z)} are statistically indistinguish-
able [19] (in function of z), then {f(D1)(x)} and f(D2)(x) are also statistically indistinguishable.

Proof.  Statistically indistinguishable means that

> Iprob(Di(x) = a) — prob(Ds(x) = a)| < =(Jz]), (15)
ae{0,1}*

where ¢(|z]) is a negligible function [19], e.g., 2. Now

S Iprob(£(Dy(x)) = B) — prob(f(Ds(x)) = B)|

Be{0,1}~
= Z Z (prob(D; (z) = a) — prob(Ds(x) = a))| (theorem of total probability)
PO s(a)=s
< D Y Iprob(Di(x) = a) — prob(Dy(z) = )| (la +0f < |af + [b])
PO f(a)=s
< Z |prob(D;(z) = a) — prob(Da(z) = a)] < e(|z|) (due to (15)).
a€{0,1}*

a

Corollary 4 When the family of random variables {D(x)} is statistically zero-knowledge and f is
a function that can be computed in expected polynomial time (in function of |x|), then the family of
distributions {f(D)(x)} is statistically zero-knowledge.

Proof. {D(z)} being statistically zero-knowledge, implies that there exists an expected polyno-
mial time simulator that can generate an {D’(z)} which is statistically indistinguishable from D(z).
Then to simulate {f(D)(x)}, use the simulator and apply f on the output of the simulator. a

Proof of Theorem 3

We denote the column (rq,...,r,) as 7. We now organize all the subshares of the participants in a
set B as a long column and call it 5. Using a similar ordering, we organize all the corresponding
integers u, () (see (9)) where ¢ € B in a column and call it @j. For each j (1 < j < b), we proceed

in the same way with the integers u;’(h) (see (9)) to form a column u/ 5. We define Ug to be the

¥
matrix with columns @ 5 (1 < j < b) and Uy have the same columns as Uy but augmented by the
column aj. So, (9) gives:

op=1tg-k+Ug-T. (16)

We first prove that, if B ¢ I' and if the conditions in Lemma 1 are satisfied and if (Ip, K(+), a, w)
is perfect for any finite Abelian group K, then U 1’§’ and Ut’§ have the same invariant factors. The prove
is similar as the one in Appendix B. Indeed, there exist invertible matrices (over Z) V; and V5 such
that ViU%ZVs = UY', where U’ is the Smith normal form of UZ, with diagonal elements the invariant
factors (di,dy - da,dy - do -+ dm,0...,0), where d;; > 0. Then (16) can be transformed into:

Vi-gg=Vi-as-k+UY -V, b F 17
B B B 2

11



Let K(4) = Zg,, then the first element in V; - @’; must be divisible by d;, otherwise the scheme is
clearly not perfect. Similar arguments are valid for the next elements of the column V; - ﬂk This
easily implies that V; - UB = U’” Zj, where Z is a column of integers. Now it is straightforward to
see that Ug 7 and U’ have the same invariant factors, using a similar argument as in [21, pp. 387-389].

Now, there ex1sts an ng a column of integers, such that zz =V, ! ZB. So, (17) can be rewritten
as:

‘/1.6-8‘ — U’B_{’,‘/zfl.(f{_zlg.k), or
o5 = Ug-(F+z5-k). (18)

If K = Z and we do not bound the choice of 7, it is possible to obtain the same tuple of subshares
73, regardless of the value of k. We are now ready to discuss the simulator when each integer r; is
chosen in the interval [0, nelnl — 1], i.e., prove that o3 can be simulated in expected polynomial time
and this for each B ¢ I'. Note that, due to our conditions in the theorem, the length of the integers
in Uz are polynomially bounded in |n| (see Lemma 1). So, Uz is a polynomial time function. This
implies, due to Corollary 4, that, to prove the theorem it is sufficient to prove that: p = (7 + Zj - k)
can be simulated by a simulator who does not know & (i.e., the same simulator is used regardless of
k). We now prove that this sufficient condition is satisfied.

The simulator will choose p; (1 < j < b) as an integer chosen in the interval [0,n?I" — 1] and
return p' = (p,...,p,)T (as a simulation for p).

Let D(n) be the actual distribution of p and D’(n) be the distribution of the simulated p’. We
prove that these are statistically indistinguishable. Informally, we demonstrate that most of the time
p' = p. The set of possible p and p' are generalized cubes R and R'. Crucial to the proof is that, if p
is not in R’ then there is at least one p; for which it is not true that 0 < p; < nPl"l —1. Similar, if 7' is
not in R then there is at least one p}; for which it is not true that (2 B k) < pf < (np™ — )+(z;§’j -k).
So, if Z~ - k is positive and for one j: 0 < p; < Z~j or n?I"l < p; < (P — 1) 4 (2 %j - k) then p
does not belong to RNR'. We have a similar condition when Z~ 5. - k is negative. Note that, due to
our conditions and [26] the binary length of the integers in Z~ is polynomial in |n|, let say less than

In|*, so zj ; < n!""*"". We then obtain:

b (n|n\“1—1+1)i (np(ln\))b_
Z [prob(D; (z) = a) — prob(Dy(z) = a)] < Z () b
‘ ( p(In))
aE{O,l}* =1 (’I’L )
b cp—1 g
b\ ((nln
50 (5

plnlt 41 b
= -1+ 14+—
np(nl)

which is negligible when p(|n|) > |n|*~! + 2 (asymptotically).
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