
University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

SOFTWARE SECURITY AND RANDOMIZATION
THROUGH PROGRAM PARTITIONING AND CIRCUIT VARIATION

MOVING TARGET DEFENSE (MTD) ’ 14
3 NOV 2014

Todd Andel
Lindsey Whitehurst
Todd McDonald

School of Computing
University of South Alabama

Work performed under NSF grants CNS-1305369, DUE-1241675, DUE-1303384

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Hypothesis

 Partitioning security critical program sections to

FPGAs may mitigate many software security risks that
rely on jumping within a program’s address space.

 Since we utilize reconfigurable hardware, our partition approach

can be used to provide a dynamic and adaptive software layout,
resulting in a continually changing target.

2

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Overview

• Hardware/Software Paradigm and Program Partitioning

• Partitioning for Software Security

• Where we’re at

• Transitioning Towards Dynamic Target

3

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Hardware / Software Paradigm 4

Program

HLL: Java, C, C++

HDL: Verilog, VHDL

GPP
• Lowest speed
• Reconfigurable software

ASIC
• High speed
• Cost, time, not reconfigurable

FPGA
• Speed approaches custom HW
• Reconfigurable logic

Compile to opcodes

Circuit synthesis

Circuit masking

Target

FPGA growth has allowed for:
 Customized reconfigurable “software” onto a hardware device

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

FPGAs and Security Research

• Increasing Speed and
Efficiency of Applications

• Protecting from
Side-Channel-Analysis

• Protecting Intellectual
Property and Preventing
Tampering

• Dynamically Monitoring
Programs at Runtime

5

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Program Partitioning

Partitioning idea has been used for speedup
a.k.a a co-processor

6

Opcode
Instructions

on GPP

Hardware
Circuits

Program body
main:
 la $t0, A
 add $t1, $0, $0
 addi $t2, $0, 5
 add $s0, $0, $0

Partition control – State transfer

Partitioned Program Model

Reconfigurable logic changes this from a
manufacture time decision to a compile time decision

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Our Quest

• Determine if program partitioning between an FPGA and
GPP can increase software security

• Previous works do not provide functional protection of the code

• Investigate system resilience against buffer overflow attacks

• Well known and documented
• Initial indication that system will enhance security

• Cost-Effective Study

• Determine the additional overhead added because of new configuration

7

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

FPGAs Enhance Security via Partitioning

• FPGAs do not have a
program counter
• Can attacks that rely on

addresses be mitigated by
running the vulnerable
portions on an FPGA?

• For Example:

• Stack Overflow
• Heap Overflow
• Return-to-libc

8

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Progress

Goal

Implement Vulnerable Program, Demonstrate Vulnerabilities 

Partition and Implement Software on GPP and FPGA 

Test Partitioned System 

Determine Overhead Associated with System

9

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Implement Vulnerable Program and Attack on GPP

• Hardware
• Xilinx Virtex-5 LX50T FPGA on Diligent Genesis development board

• Microblaze Processor

• Designed in Xilinx XPS Using
Base System Builder

• Acts as GPP
• Uses GCC Compiler
• Turned off Compiler Flags to

Prevent Stack Protection
• Simple C Program vulnerable

to Buffer Overflows

10

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Microblaze – C Program

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "platform.h“

int checkLicense(char **license)
{
 char license_buffer[16];
 int valid_flag[1] = {0};
 (strcpy)(license_buffer, *license);
 if((strcmp)(license_buffer,"validLicense")==0)
 {
 valid_flag[0] = 1;
 }
 return valid_flag[0];
}

int main()
{
 init_platform();

char *myLicense =
"notAValidLicenseButOverflowingTheBuffer";
if(checkLicense(&myLicense))
{
 printf("\n\n=============================\n
");
 printf("Correct License! Please Continue\n");
 printf("=============================\n\n")
;
 }
else
{
 printf("\nIncorrect License, Access
 Denied.\n\n");
 }

 return 0;
}

Vulnerable as expected since sending in a larger license code than the buffer

11

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Partitioned System Design

• Microblaze Designed in Xilinx XPS
• Includes dual-port BRAM
• C program running on Microblaze
• Attached to BRAM port A

• User core implemented in VHDL

• checkLicense now a circuit
• License key included

• Attached to BRAM port B

• Trigger and data both passed
through BRAM

12

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Control Flow within System

• Control determined by value in base
address of shared BRAM space

• Data located in next address location
in BRAM

• While c program is in control, lock = 1
• While VHDL is in control, lock = 2

Memory
Location

0x90000000 Base Address of
Shared BRAM

0x90000004 Lock

0x90000008 Data

… …

13

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Partitioned Version

int main()
{
 char *p_data = "validLicense";
 int *p_lock;
 int *p_data_location;

 p_lock = 0x90000004;
 p_data_location = 0x90000020;

 memcpy(p_data_location, p_data, 12);
 *p_lock = 1;

 xil_printf("User Entered Data = %s\n", p_data);

 while(*p_lock !=2){}
 if(*p_data_location != 0)
 {
xil_printf("\n\n=========================\n");
 xil_printf("Correct License! Please Continue\n");
 xil_printf("=============================\n\n");}
 }
 else
 {
 xil_printf("\nIncorrect License, Access Denied.\n\n");
 }
return 0; }

Data and Trigger Via BRAM

B
R
A
M

14

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Partition Design Operates as Intended

• Unfinished
• More testing, runtime input
• Timing and Overhead
• Repeat for real GPP Partition vs. Microblaze

15

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Transitioning to Dynamic Adaptive Variation

• Reconfigurable hardware allows target to change:
• Two thrusts

1. Partitioning
2. Equivalent circuits

16

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Partitioning Variants

• Randomly select partition
• Basic blocks, function, method, object

• Automate via HLL – HDL compiler
• SystemC, Streams-C, Impulse C

• Challenges

• How to select partition and how often
• Changing trigger and data changes between variants

17

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Circuit Variations

• Take partition and produce circuit variants via polymorphic
generator
• Variants with same I/O relationship
• Possibly change I/O relationships with fake inputs/fake outputs
• Essentially a form of indistinguishability obfuscation

18

• Preferably we would like variants
that:
• Are generated randomly and

efficiently
• Hide some form of abstract

information (topology, signals,
components, function)

• Current techniques:
• Iterative subcircuit selection and

replacement
• Deterministic hiding algorithms

(mainly component hiding)

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Iterative Subcircuit Selection and Replacement

• Random Boolean logic expansion (using logic rules)
• Random circuit generation (generate random circuits until

you find a match)
• Random function expansion (using BDD)

19

Subcircuit
Selection

Csub

Subcircuit
Replacement

Crep

?????

Ci′ C Cn′

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

The Big Picture with Dynamic Partial Reconfiguration

• HLL functions, basic blocks
• How many? How often? How

selected?
• Program changes to

remaining software

20

• Equivalent circuit variants
• Generation and selection

• Runtime changes to logic
• Xilinx, Altera, & OpenPR tools

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Summary

• Hardware/Software Paradigm and Program Partitioning

• Partitioning for Software Security

• Where we’re at

• Transitioning Towards Dynamic Target

21

University of South Alabama CFITS (Center for Forensics, Information Technology, and Security) School of Computing

Questions 22

	�Software Security and Randomization�through Program Partitioning and Circuit Variation��Moving Target Defense (MTD) ’ 14�3 Nov 2014
	Hypothesis
	Overview
	Hardware / Software Paradigm
	FPGAs and Security Research
	Program Partitioning
	Our Quest
	FPGAs Enhance Security via Partitioning
	Progress
	Implement Vulnerable Program and Attack on GPP
	Microblaze – C Program
	Partitioned System Design
	Control Flow within System
	Partitioned Version
	Partition Design Operates as Intended
	Transitioning to Dynamic Adaptive Variation
	Partitioning Variants
	Circuit Variations
	Iterative Subcircuit Selection and Replacement
	The Big Picture with Dynamic Partial Reconfiguration
	Summary
	Questions

