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Hypothesis 

  
 
 
 
 Partitioning security critical program sections to 

FPGAs may mitigate many software security risks that 
rely on jumping within a program’s address space. 

 
 
 Since we utilize reconfigurable hardware, our partition approach 

can be used to provide a dynamic and adaptive software layout, 
resulting in a continually changing target.  
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Overview 

• Hardware/Software Paradigm and Program Partitioning 

• Partitioning for Software Security 

• Where we’re at 

• Transitioning Towards Dynamic Target 
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Hardware / Software Paradigm 4 

Program 

HLL: Java, C, C++ 

HDL: Verilog, VHDL 

GPP 
• Lowest speed 
• Reconfigurable software 

ASIC 
• High speed 
• Cost, time, not reconfigurable 

FPGA 
• Speed approaches custom  HW 
• Reconfigurable logic 

Compile to opcodes 

Circuit synthesis 

Circuit masking 

Target 

FPGA growth has allowed for: 
 Customized reconfigurable “software” onto a hardware device  
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FPGAs and Security Research 

• Increasing Speed and 
Efficiency of Applications 

• Protecting from  
Side-Channel-Analysis 

• Protecting Intellectual 
Property and Preventing 
Tampering 

• Dynamically Monitoring 
Programs at Runtime 
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Program Partitioning 

Partitioning idea has been used for speedup 
a.k.a a co-processor 
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Opcode 
Instructions 

on GPP 

Hardware 
Circuits 

# Program body 
main: 
     la $t0, A   
     add $t1, $0, $0 
     addi $t2, $0, 5 
     add $s0, $0, $0 

Partition  control – State transfer 

Partitioned Program Model 

Reconfigurable logic changes this from a 
manufacture time decision to a compile time decision 
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Our Quest 

• Determine if program partitioning between an FPGA and 
GPP can increase software security 
 
• Previous works do not provide functional protection of the code 

 
• Investigate system resilience against buffer overflow attacks 

• Well known and documented 
• Initial indication that system will enhance security 

 
• Cost-Effective Study 

• Determine the additional overhead added because of new configuration 
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FPGAs Enhance Security via Partitioning 

• FPGAs do not have a 
program counter 
• Can attacks that rely on 

addresses be mitigated by 
running the vulnerable 
portions on an FPGA?  

 
• For Example: 

• Stack Overflow 
• Heap Overflow 
• Return-to-libc  

8 

 



University of South Alabama                                           CFITS (Center for Forensics,  Information Technology, and Security)                                                        School of  Computing 

Progress 

Goal 

Implement Vulnerable Program, Demonstrate Vulnerabilities  

Partition and Implement Software on GPP and FPGA  

Test Partitioned System  

Determine Overhead Associated with System 
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Implement Vulnerable Program and Attack on GPP 

• Hardware 
• Xilinx Virtex-5 LX50T FPGA on Diligent Genesis development board 

 
• Microblaze Processor 

• Designed in Xilinx XPS Using  
Base System Builder 

• Acts as GPP 
• Uses GCC Compiler 
• Turned off Compiler Flags to  

Prevent Stack Protection 
• Simple C Program vulnerable  

to Buffer Overflows 
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Microblaze – C Program 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
#include "platform.h“ 
 
int checkLicense(char **license) 
{ 
    char license_buffer[16]; 
    int valid_flag[1] = {0};   
   (strcpy)(license_buffer, *license);  
   if((strcmp)(license_buffer,"validLicense")==0)  
      {   
       valid_flag[0] = 1;  
       }    
    return valid_flag[0]; 
} 

int main() 
{     
              init_platform();     

char *myLicense = 
"notAValidLicenseButOverflowingTheBuffer";    
if(checkLicense(&myLicense))    
{       
 printf("\n\n=============================\n
");     
 printf("Correct License! Please Continue\n");     
 printf("=============================\n\n")
;    
 }     
else     
{      
 printf("\nIncorrect License, Access  
   Denied.\n\n");    
 }      

 return 0; 
} 

Vulnerable as expected since sending in a larger license code than the buffer 
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Partitioned System Design 

• Microblaze Designed in Xilinx XPS 
• Includes dual-port BRAM 
• C program running on Microblaze 
• Attached to BRAM port A 

 
• User core implemented in VHDL 

• checkLicense now a circuit 
• License key included 

• Attached to BRAM port B 
 

• Trigger and data both passed 
through BRAM 
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Control Flow within System 

• Control determined by value in base 
address of shared BRAM space 

• Data located in next address location 
in BRAM 

• While c program is in control, lock = 1 
• While VHDL is in control, lock = 2 

Memory 
Location 

0x90000000 Base Address of 
Shared BRAM 

0x90000004 Lock 

0x90000008 Data 

… … 
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Partitioned Version 

int main() 
{ 
   char *p_data = "validLicense"; 
   int *p_lock; 
   int *p_data_location; 
 
   p_lock = 0x90000004; 
   p_data_location = 0x90000020; 
    
   memcpy(p_data_location, p_data, 12); 
   *p_lock = 1; 
 
   xil_printf("User Entered Data = %s\n", p_data); 
 
   while(*p_lock !=2){} 
   if(*p_data_location != 0 ) 
    { 
xil_printf("\n\n=========================\n"); 
     xil_printf("Correct License! Please Continue\n"); 
   xil_printf("=============================\n\n");} 
     } 
     else 
      { 
       xil_printf("\nIncorrect License, Access Denied.\n\n"); 
       } 
return 0; } 

Data and Trigger Via BRAM 

B
R
A
M 
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Partition Design Operates as Intended 

• Unfinished 
• More testing, runtime input 
• Timing and Overhead 
• Repeat for real GPP Partition vs. Microblaze 
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Transitioning  to Dynamic Adaptive Variation 

• Reconfigurable hardware allows target to change: 
• Two thrusts 

1. Partitioning 
2. Equivalent circuits 
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Partitioning Variants 

• Randomly select partition 
• Basic blocks, function, method, object 

 

• Automate via HLL – HDL compiler 
• SystemC, Streams-C, Impulse C 

 
• Challenges 

• How to select partition and how often 
• Changing trigger and data changes between variants 
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Circuit Variations 

• Take partition and produce circuit variants via polymorphic 
generator 
• Variants with same I/O relationship 
• Possibly change I/O relationships with fake inputs/fake outputs 
• Essentially a form of indistinguishability obfuscation 
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• Preferably we would like variants 
that: 
• Are generated randomly and 

efficiently 
• Hide some form of abstract 

information (topology, signals, 
components, function) 
 

• Current techniques: 
• Iterative subcircuit selection and 

replacement 
• Deterministic hiding algorithms 

(mainly component hiding) 
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Iterative Subcircuit Selection and Replacement 

• Random Boolean logic expansion (using logic rules) 
• Random circuit generation (generate random circuits until 

you find a match) 
• Random function expansion (using BDD) 

19 

Subcircuit 
Selection 

Csub 

Subcircuit 
Replacement 

Crep 

????? 

Ci′ C Cn′ 
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The Big Picture with Dynamic Partial  Reconfiguration 

• HLL functions, basic blocks 
• How many? How often? How 

selected? 
• Program changes to 

remaining software  
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• Equivalent circuit variants  
• Generation and selection 

• Runtime changes to logic 
• Xilinx, Altera, & OpenPR tools 
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Summary 

• Hardware/Software Paradigm and Program Partitioning 

• Partitioning for Software Security 

• Where we’re at 

• Transitioning Towards Dynamic Target 
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Questions 22 
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