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Abstract 

We optimally place intrusion detection system (IDS) sensors and prioritize IDS alerts using attack 

graph analysis.  We begin by predicting all possible ways of penetrating a network to reach critical assets.  

The set of all such paths through the network constitutes an attack graph, which we aggregate according 

to underlying network regularities, reducing the complexity of analysis.  We then place IDS sensors to 

cover the attack graph, using the fewest number of sensors.  This minimizes the cost of sensors, including 

effort of deploying, configuring, and maintaining them, while maintaining complete coverage of potential 

attack paths.  The sensor-placement problem we pose is an instance of the NP-hard minimal set cover 

problem.  We solve this problem through an efficient greedy algorithm, which works well in practice.  

Once sensors are deployed and alerts are raised, our predictive attack graph allows us to prioritize alerts 

based on attack graph distance to critical assets. 

1. Introduction 

A variety of challenges make it inherently difficult to secure computer networks against attack.  

Vulnerabilities in software design, implementation, and configuration are commonplace, and even the 

Internet itself lacks security as an original design goal.  Once a machine is connected to a network, its 

security concerns become highly dependent on vulnerabilities across the network.  Attackers can use 

vulnerable machines as stepping stones to penetrate through a network and compromise critical systems. 

In traditional network defense, IDS sensors are placed at network perimeters, and configured to detect 

every attempt at intrusion.  But if an attacker manages to avoid detection at the perimeter, and gain a 

toehold into the network, attack traffic on the internal network is unseen at the perimeter.  Also, in today’s 

highly distributed grid computing, network boundaries are no longer clear. 

Organizations have a desire to detect malicious traffic throughout their network, but may have limited 

resources for IDS sensor deployment.  Moreover, IDS usually report all potentially malicious traffic, 

without regard to the actual network configuration, vulnerabilities, and mission impact.  Given large 

volumes of network traffic, IDS with even small error rates can overwhelm operators with false alarms.  

Even when true intrusions are detected, the actual mission threat is often unclear, and operators are unsure 

as to what actions they should take. 

By knowing the paths of vulnerability through our networks, we can reduce the impact of attacks.  

Traditional tools for network vulnerability assessment simply scan individual machines on a network and 

report their known vulnerabilities.  They give no clues as to how attackers might exploit combinations of 

vulnerabilities among multiple hosts to advance an attack on a network.  It remains a labor-intensive and 

error-prone exercise for “connecting the dots” to predict vulnerability paths, and the number of possible 

vulnerability combinations to consider can be overwhelming. 

To address these weaknesses, we focus on protecting the network assets that are mission-critical.  We 

model the network configuration, including topology, connectivity limiting devices such as firewalls, 

vulnerable services, etc.  We then match the network configuration to known attacker exploits, simulating 

attack penetration through the network and predicting attack paths leading to compromise of mission-

critical assets.  This approach to network attack survivability is called Topological Vulnerability Analysis 

(TVA) [1][2]. 
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The resulting set of all possible attack paths (organized as an attack graph) is a predictive attack 

roadmap.  The TVA attack graph assesses the true vulnerability of critical network resources, and 

automates the traditionally labor-intensive analysis process.  TVA also encourages easy “what-if” 

analyses of candidate network configuration changes, and provides optimal network-hardening 

recommendations that require minimal changes to the network. 

Even after protective measures have been applied across the network, some residual vulnerability 

usually remains.  In such cases, TVA attack graphs can reduce the impact of attacks.  The attack graph 

guides the placement IDS sensors across the network to cover known paths of vulnerability.  In this way, 

all potentially malicious activity on critical paths is monitored.  Conversely, no sensors are needed for 

monitoring traffic that does not lie on critical paths, helping to reduce costs and operator overload.  In 

particular, our approach places sensors to cover all attack paths to critical assets, using the fewest number 

of deployed sensors. 

Further, through the predictive power of TVA attack graphs, we prioritize IDS alerts based on the 

level of threat they represent to critical assets.  For example, we can give lower priority to alerts that lie 

outside critical attack paths.  Particularly severe threats are those seen as coordinated steps as an attacker 

incrementally advances through the network, especially if only a short distance from mission-critical 

assets.  The attack graph also provides the context needed for responding to an attack.  When an operator 

has strong evidence (e.g., multiple coordinated steps) of an intrusion, and knows the next network 

vulnerabilities the attacker could exploit next, he has confidence in taking the appropriate (and highly 

focused) actions for preventing further penetration. 

In the next section, we review related work in attack graph analysis, IDS alert correlation, and sensor 

placement.  Section 3 gives an overview of our system for discovering network attack paths, covering the 

paths with IDS sensors, and correlating and prioritizing the resulting alerts.  Section 4 provides a technical 

description of our method for generating attack graphs and aggregating them over multiple levels.  In 

Section 5, we describe our method for optimal placement of IDS sensors, which covers all network attack 

paths using the minimum number of sensors.  Section 5 also describes how we leverage the known 

network attack paths to correlate and prioritize the resulting alerts.  Finally, in Section 6 we summarize 

these results. 

2. Related Work 

Early work in automated construction of attack graphs applied symbolic model checking tools [3][4].  

But model checkers have significant scalability problems, a consequence of the exponential complexity of 

the general state space they consider.  Early graph-based approaches for analyzing attack combinations 

suffered similar problems with state-space explosion [5][6]. 

Subsequently, scalable attack graph models have emerged [1][7].  Rather than explicitly enumerating 

paths through state space, these models represent dependencies between state transitions (attacker 

exploits), eliminating path redundancies and succinctly capturing all state information.  These models 

scale quadratically with the number of network hosts (ignoring man-in-the-middle attacks, which raise 

complexity to n
3
).  By representing fully-connected portions of the attack graph (e.g., within a subnet) 

more efficiently, scalability is improved to linear within each defined portion [8].  Another approach is to 

reduce graph complexity based on regularities in host configurations [9].  Efficient rule-based approaches 

for generating attack graphs have also been demonstrated [10][11][12][13]. 

There have also been advances that help alleviate the information overload of attack graph analysis.  

The approach in [8] includes highly interactive visualizations of clustered attack graphs, with high-level 

overviews and detail drilldown, over multiple levels of detail.  A different paradigm is applied in [14], in 

which complex attack graphs are shown as adjacency matrices, simplified through matrix clustering 

techniques.  In [15], a number of complementary attack graph views, including hierarchically clustered 

graphs, clustered matrices, and user-constrained graphs are coordinated for interactive visualization. 
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Once attack graphs are generated, they can be further analyzed.  In [16], attack graphs are used to find 

optimal network configurations that prevent a given attack scenario while requiring the fewest changes to 

the network.  Attack graphs have also been used for computing metrics of overall network security 

[17][18].  In [19], attack graph states are ranked for prioritizing security measures, and a rank-based 

security metric is defined.  Overall, advances in scalability, visualization, and post analysis help make 

attack graph applications feasible for realistic sized networks.  A more detailed review of various 

developments in attack graph research (as of 2005) is given in [20]. 

Beyond analysis of vulnerability paths, attack graphs have been applied to IDS alert correlation 

[21][22][23].  In fact, through our approach, attack graphs are most powerful when predicted paths (based 

on vulnerabilities) are matched with actual detected attacks.  This helps eliminate false positives, enables 

prediction of missing alerts, makes alert correlation faster, and provides the context for attack response.  

In [24], IDS alerts are correlated into multi-step attack scenarios, using attack graph distances based on 

known network vulnerabilities. 

Despite these advances, a key step has been overlooked.  In particular, previous work does not 

address the placement of IDS sensors within the network infrastructure to cover known vulnerability 

paths.  When IDS sensor placement is addressed in the literature, it is usually in the context of general 

architectures for distributed intrusion detection, such as [25].  One paper has applied network attack 

modeling (based on logic programming) for placing IDS sensors, for the limited case of Internet Protocol 

(IP) spoofing attacks. [26]. 

In [27], a model checker is used to find a minimal coverage of attack paths, using IDS or other 

protection measures.  This approach provides a weak kind of optimality, giving the minimum set of 

measures that block the attacker from the end goal (the unsafe state of the model checker), assuming that 

each such measure is successful.  However, this is not a safe assumption, given the high likelihood of 

missed IDS detections.  In other words, with such minimum coverage, if only one attack is missed, the 

remaining uncovered paths may readily allow network penetration to critical network assets.  While such 

minimal coverage may be appropriate for assured hardening measures such as software patches and 

firewall rules, it is clearly insufficient for IDS deployment.  In contrast, we cover all possible attack paths 

(not just a minimum subset), using a minimum number of sensors while maintaining polynomial 

complexity. 

Further, the approach in [27] does not identify how a minimum set of attack paths actually map to 

IDS sensor deployment in the network infrastructure.  For example, an attack from host A to host B may 

pass through multiple network devices.  But given all possible paths and network devices, on which 

physical device(s) should we deploy sensors?  This is precisely the problem that we address. 

In particular, we assign IDS sensors to network devices so that they cover all known paths of 

vulnerability through the network.  If desired, we can focus these paths based on known threat sources 

and critical network assets.  Our sensor placement is optimal, in that only a minimum number of sensors 

are needed.  Once sensors are placed, we use our predictive attack graph to prioritize the resulting IDS 

alerts according to distance from critical assets.  Our approach was first proposed at the Cyberspace 

Research Workshop [28], organized by the newly formed Air Force Cyber Command. 

3. System Overview 

Because attackers can exploit vulnerabilities as stepping stones to new vantage points, considering 

network components and vulnerabilities in isolation is clearly insufficient.  We have implemented a 

comprehensive TVA tool that discovers multi-step attacks, modeling network penetration as real attackers 

might do.  This is a custom tool, written in the Java programming language, with full-featured user 

interface and attack graph visualization capabilities.  This TVA tool computes an attack graph showing all 

possible paths through a network.  The approach that we propose here is to place IDS sensors to cover 

these predicted TVA paths, and to use this predictive context for prioritizing IDS alerts. 
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In the TVA approach, a network is scanned to catalog hosts, their operating systems, application 

programs, and vulnerable network services.  We also capture network connectivity, including the effects 

of connectivity-limiting devices such as firewalls and router access control lists (ACLs).  With the 

resulting network configuration, a database of modeled attacker exploits, and a specification of threat 

origin and critical network assets, we compute the attack graph comprising all known attacks through the 

network. 

In particular, from network scans our TVA tool builds a model of the network configuration.  This 

configuration is then subjected to simulated attacks from our TVA exploit database.  Exploits are modeled 

in terms of preconditions and postconditions.  When all preconditions for an exploit are met (e.g., from 

the initial network state), the exploit is successful, and its postconditions are induced.  These 

postconditions in turn provide potential preconditions for other exploits.  The resulting set of exploits, 

joined by their precondition/postcondition dependencies, forms the attack graph, predicting all possible 

attacks through the network.  We integrate with popular network scanning tools (e.g., Nessus [29], Retina 

[30], and FoundScan [31]) to automate the network model building process.  We also continually monitor 

sources of reported vulnerabilities, keeping the TVA exploit database current with respect to emerging 

threats. 

TVA attack graphs can follow pre-defined attack scenarios, e.g., based on assumed threat sources 

(attack starting points) or critical assets to be protected (attack ending points).  We can then constrain the 

attack graph with respect to these starting and/or ending points.  This allows an organization to focus on 

realistic threat sources, while insuring the safety of critical assets.  Algorithmically, these constraints are 

applied in two passes.  The forward pass traverses the graph in a forward direction from the starting 

point(s), and the backward pass traverses the graph in a backward direction from the ending point(s).  

These passes can be applied independently, to constrain the graph in one direction or the other, or 

combined as a joint constraint. 

In their low-level form, TVA attack graphs for realistic sized networks can be large and complex.  

Our approach aggregates attack graphs at various levels of detail, e.g., host, subnet, etc.  We then apply 

analysis to the appropriate level of graph abstraction, to help keep complexity manageable.  In fact, we 

aggregate elements of the network model in advance, so that attack graph computations are more 

efficient.  Our aggregated structures retain all underlying low-level information, so that no information is 

lost compared to the full low-level attack graph.  This information is also available for interactive 

drilldown in attack graph visualization. 

Once we create the TVA attack graph predicting all possible paths through the network, we can 

formulate optimal network defenses.  Of course, the first step is to reduce risk by hardening the network 

in advance of attack [16].  Still, given requirements for mission-critical services, availability of patches, 

etc., some residual vulnerability paths often remain on a network.  The next step is to deploy IDS sensors 

to monitor traffic and detect potentially malicious activity along these paths. 

In fact, our proposed placement of IDS sensors is optimal, in the sense that a network’s attack graph 

is entirely covered, using the fewest required number of sensors.  We argue that this sensor placement 

problem is an instance of the classical set cover problem [32], which is NP-hard.  To solve this problem, 

we apply a polynomial-time greedy heuristic that is known to give good solutions in practice. 

Once sensors are deployed and the IDS starts generating alerts, our attack graphs provide the 

necessary context for correlating and prioritizing those alerts.  For example, if two alerts lie in a sequence 

along the attack graph, there is strong potential that these are multiple steps along a single attack, and 

should be taken very seriously.  Further, we can predict the minimum number of future steps before the 

attacker reaches a given critical network asset, and can prioritize the alert accordingly.  Based on our 

knowledge of possible attack paths, we can formulate optimal responses for stopping any further progress 

by the attacker. 
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4. Attack Graph Generation and Aggregation 

Figure 1 shows a small network, which we have implemented in a laboratory testbed for 

demonstrating the automated generation of attack graphs via our TVA tool.  In this network, the purpose 

of the firewall is to protect the internal network from outside attack.  It is configured to allow only 

hypertext transfer protocol (HTTP) traffic to the internal web server, and all other traffic initiated from 

the outside is blocked.  The web server is running a vulnerable version of Microsoft Internet Information 

Server (IIS), which is reachable from the outside through the firewall.  The mail server has vulnerable 

software deployed as well, although the firewall protects it from direct attack from the outside.  The 

question we pose is whether there are paths that allow the outside attacker to compromise the mail server. 

Only http traffic

to Web Server

allowed

 

Figure 1.  Small testbed network for demonstrating attack graph analysis. 

To capture the network configuration for Figure 1, we use the output of the open-source Nessus 

vulnerability scanner.  First, we scan from the outside through the firewall, targeting the internal network.  

We then scan the internal network behind the firewall, to see the attacker’s options once he gains entry to 

the internal network.  When then merge the resulting scan results into an overall TVA network model.  

This model then serves as the initial conditions for a TVA attack simulation, in which we apply a 

database of simulated exploits derived from Nessus vulnerabilities. 

 

Figure 2.  Attack graph for testbed network in Figure 1. 
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The TVA attack simulation begins on the outside machine, and ends with the compromise of the mail 

server.  Figure 2 shows the resulting attack graph.  Yellow boxes are initial network conditions, and blue 

ovals are attacker exploits.  Here, a condition of the form nessus.xxxxx(from, to) represents the fact that 

the from machine can connect to a service on the to machine, and that this service has a particular xxxxx 

vulnerability detected by Nessus.  So for example, initial condition nessus.10671(attack, web) means that 

the web server has Nessus vulnerability number 10671 (IIS Remote Command Execution) [33] (also 

identified as CVE-2001-0333 and CVE-2001-0507 under MITRE’s Common Vulnerabilities and 

Exposures [34]), and that the attack machine can connect to that vulnerable service on the web server. 

In Figure 2, network conditions of the form execute(machine) represent the attacker’s ability to 

execute arbitrary code on a particular machine.  The attacker can initially execute code on his own 

machine, as indicated by the execute(attack) in a yellow box.  A condition such as execute(web) is 

induced as a postcondition of one or more exploits (in this case, by 3 different exploits), so it does not 

appear in a yellow box (i.e., not an initial condition).  Conditions defined as overall attack goals (in this 

case, executing code with superuser privilege level on the mail server) are shown in red octagons. 

So in Figure 2, the iis_decode_bug(attack, web) exploit requires 2 preconditions to be met, i.e., 

execute(attack) and nessus.10671(attack, web).  Since these are part of the initial network conditions, this 

exploit is successful, and yields the postcondition execute(web). i.e., the attacker can now execute code on 

the web server.  Two other exploits (iis_dir_traversal and msadcs_dll) are also possible from the attack 

machine against the web server.  Once the attacker can execute code on the web server, four subsequent 

exploits are possible, each from the web server to the mail server.  Two of those (ntalk_detect and 

wu_ftpd_site_exec) give the ability to execute code as superuser on the mail server, i.e., the goal has been 

reached.  The other two (telnet and rlogin) give the ability to execute code, but without superuser 

privilege level.  Then two subsequent exploits (wu_ftpd_site_exec and ntalk_detect) elevate attacker 

privilege to superuser on the mail server. 

The attack graph allows us to reason about network defense strategies.  For example, in Figure 2, 

removing Nessus vulnerabilities 10671, 10537, and 10357 on the web server would stop the attack.  Or, 

we can conclude that fixing mail server vulnerabilities 10280 and 10205 are essentially irrelevant 

hardening options, i.e., 10452 and 10168 would need to be fixed anyway, and together will successfully 

prevent the attack (assuming it is sufficient to block the attacker from gaining superuser privilege). 

Of course in practice, network attack graphs are usually much more complex than Figure 2.  For 

example, Figure 3 is an attack graph generated by our TVA tool for an operational network of only 17 

machines, across 4 subnets, with between 2 and 6 exploitable vulnerabilities per machine.  Despite the 

complex relationships in this graph, you can still see dependency patterns among exploits.  There are 

densely connected parts of the graph, connected by relatively sparse sets of edges.  These patterns are in 

fact a consequence of regularities in the network configuration, of which we can take advantage for 

summarizing attack patterns. 

These regularities are a direct reflection of how the network is organized, and are a natural choice for 

aggregating the attack graph into multiple levels of abstraction.  This is illustrated in Figure 4.  Here, 

Figure 4(a) is the original attack graph, showing all details.  In Figure 4(b), the graph has been aggregated 

to the level of machines and sets of exploits between them.  For example, the circled region contains 4 

machines, with exploit sets between each pair of them.  In other words, all the network conditions for a 

particular machine in Figure 4(a) are collapsed to a single “machine” vertex in Figure 4(b), and all the 

exploits between a particular pair of machines (in each direction if applicable) are collapsed to a single 

machine-to-machine exploit set in Figure 4(b).  Figure 4(b) thus represents a summary of Figure 4(a), 

providing more of an overview of the attack. 
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Figure 3.  More complex attack graph for 17-machine operational network. 

8/29/2007

(a)
(b)

(c)

(d)

 

Figure 4.  Aggregation of complex attack graph over multiple levels of detail. 
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In Figure 4(b), the circled portion of the attack graph is fully connected, i.e., this sub-graph forms a 

clique.  This is because these machines are in the same subnet (broadcast domain), so that they have 

unrestricted access to one another’s vulnerable services.  We can incorporate this knowledge of the 

network structure when building the input network model.  Within such a fully connected sub-graph, it is 

sufficient to represent only those exploits to which a machine is vulnerable, since all machines in that sub-

graph can exploit those vulnerabilities.  We call such a set of machines a protection domain [8], which 

forms a natural level of aggregation, as shown in Figure 4(c).  Using this representation, graph size scales 

linearly within a protection domain (and remains quadratic across domains). 

To reduce analysis complexity even further, we can aggregate machines in a protection domain to a 

single graph vertex, as shown in Figure 4(d).  Here, we also aggregate the machine exploit sets to a single 

set between each pair of domains.  Complexity still scales quadratically, but now as a function of the 

number of protection domains rather than the number of machines, thus greatly reducing complexity.  

With this high-level view of the attack graph, we can very efficiently reason about network defense 

strategies.  For example, from Figure 4 (d), we immediately conclude that preventing the 2 exploits into 

Subnet 1 will prevent the attack.  Or, if that is not possible, a second choice is to prevent the 2 exploits 

from Subnet 1 to Subnet 2, and the 2 exploits from Subnet 1 to Subnet 3.  Other options are possible, 

though they involve fixing a greater number of vulnerabilities, and allow deeper penetration by the 

attacker. 

 

Figure 5.  TVA tool attack graph visualization for 8-machine testbed network. 
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No information is lost in our aggregation of the network model and attack graph.  Indeed, it is entirely 

reversible, so that all the details of the low-level attack graph are available.  This is illustrated in Figure 5, 

which demonstrates more advanced visualization capabilities of our TVA tool, for an 8-machine testbed 

network.  Here, a variety of levels of detail are shown in a single view of the attack graph.  With the 

interactive visualization capabilities provided by our TVA tool, the analyst can start with a high-level 

overview of the attack, and drill down as needed for particular attack details. 

As our TVA tool shows in Figure 5, there are exploits from the outside, to the DMZ web server (one 

exploit) and to the DMZ mail server (2 exploits).  Once inside the DMZ, the attacker can exploit the web 

server in 41 different ways, and exploit the mail server in 15 different ways.  Once the DMZ mail server 

is compromised, the attack can proceed from there to the mail server in the Server LAN (via 2 different 

exploits).  Inside the Server LAN, the mail server can be compromised 160 different ways, and the web 

server can be compromised 158 ways.  Once the Server LAN web server is compromised, the attacker can 

launch a single exploit against the database server (in the Database LAN), which is the defined goal of the 

attack.  The visualization drilldown shows the full details (preconditions and postconditions) for this 

exploit. 

5. IDS Sensor Placement and Alert Prioritization 

At this point in the network defense process, our TVA tool has captured the network configuration, 

used it to predict all possible paths of vulnerability through the network, and applied hardening measures 

to help reduce known paths.  But because of real-world mission and operational constraints, we are 

unlikely to eliminate all paths.  Our next line of defense is to rely on IDS. 

Now, given our knowledge of the network configuration and residual paths of vulnerability, where 

should we place IDS sensors so as to monitor all these paths?  Moreover, what placement will cover all 

critical paths with the fewest number of sensors, to minimize our deployment costs?  The residual attack 

graph defines the sources and destinations of traffic to be monitored.  Then, through analysis of network 

topology, we identify sensor locations that cover the critical paths. 

Network
Attack

Graphα β

γ δ

ε

 

Figure 6.  Testbed (hybrid real and simulated) network and its high-level attack graph. 
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Consider the testbed network in Figure 6, which we implement through a combination of real and 

replicated machine scans, and simulated network connectivity and firewall effects.  There are 8 subnets, 

with 10-20 hosts in each subnet, and routers (and the internet backbone) providing connectivity among 

the subnets.  There are vulnerabilities on many of the network hosts.  Though not shown explicitly, the 

firewalls limit connectivity and help protect the network.  Still, vulnerabilities remain on the network, and 

many are stepping stones, giving new vantage points for further penetration. 

The right side of Figure 6 is a high-level view of attacks through this network, based on TVA tool 

results.  We assume that Subnet 3 contains critical network assets to be protected.  The attack graph 

shows all possible paths leading to Subnet 3, at the subnet-to-subnet (protection domain) level.  Here, an 

edge means there is at least one exploit between given protection domains.  While other paths may exist 

through this network, only the ones shown are relevant to the protection of Subnet 3.  So it is precisely 

these paths that need to be monitored by the IDS. 

1→4 4→5

1→2

2→5

5→3

α

β

γ

δ

ε

 

Figure 7.  Optimal sensor placement for testbed network in Figure 6. 

Now, given our knowledge of critical paths through the network, we can analyze the network 

topology for placing sensors to cover all paths.  To minimize costs, we seek to cover all critical paths (the 

attack graph) using the least number of sensors.  As we have defined it, this optimal sensor placement is 

an instance of the classical set cover problem [32].  In set cover, we are given certain sets of elements, 

and they may have elements in common.  The problem is to choose a minimum number of those sets, so 

that they collectively contain all the elements.  In this case, the elements are the edges (between 
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protection domains) of the attack graph, and the sets are IDS sensors deployed on particular network 

devices.  Each IDS monitors a given set of edges, i.e., can see the traffic between the given 

attacker/victim machines. 

Consider Figure 7, which builds from the testbed network in Figure 6.  Here, through the network 

topology, we trace the routes of each subnet-to-subnet edge of the attack graph.  For example, the 

vulnerable paths from Subnet 1 to Subnet 2 are shown as a red route, from Subnet 1 to Subnet 4 as a blue 

route, etc.  The problem is then the selection of a minimum set of routers (sensors) that covers all the 

vulnerable paths in the attack graph. 

Set cover is known to be computationally hard, one of Karp’s original 21 NP-complete problems [35].  

Fortunately, there is a well known polynomial-time greedy algorithm for set cover that gives good results 

in practice [32].  The greedy algorithm for set covering follows this rule: at each stage, choose the set that 

contains the largest number of uncovered elements. 

In our case, each router can see traffic for a subset of the entire attack graph, i.e., each router covers 

certain attack graph edges.  The problem is then to choose a minimum set of routers that cover all edges.  

From Figure 7, we have the following: 

• Router A covers {(1,2), (1,4), (4,5)} = {α, β, δ} 

• Router B covers {(1,2), (4,5)} =  = {α, δ} 

• Router C covers {(1,2), (4,5), (2,5)} =  = {α, δ, γ} 

• Router D covers {(2,5), (4,5), (5,3)} =  = {γ, δ, ε} 

Here, the element (x, y) means an attack graph edge set from Subnet x to Subnet y. 

A refinement of the greedy algorithm is to favor large sets that contain infrequent elements.  In this 

example, Router A is a large set (3 elements) with the infrequent element β = (1,4), so we choose it first.  

In the next iteration, we choose Router D, which has the largest number of uncovered elements, i.e., 

γ = (2,5) and ε = (5,3).  At this point, we have covered all 5 elements (edges in the attack graph).  Our 

sensor-placement solution is thus complete, shown in Figure 7 as red eyes at the optimal sensor locations 

Router A and Router D. 

In this instance, we have in fact found the actual optimal solution.  In general, the greedy algorithm 

approximates the optimal solution within a factor of ln(n), for n elements to be covered, though in 

practice it usually does much better than this.  In our case, n is the number of attack graph edges, 

aggregated by protection domains, which is usually much smaller than the number of edges between 

individual machines.  The greedy algorithm has been shown to be essentially the best possible 

polynomial-time approximation algorithm for general set cover [36].  However, for restricted cases in 

which each element (per-domain edge) occurs in at most f sets (routers), a polynomial-time solution is 

possible that approximates the optimum to within a factor of f. 

Using appropriate data structures, the greedy algorithm for set cover can be implemented in O(n), 

where n is again the number of per-domain attack graph edges.  More nearly optimal solutions for set 

cover may be possible through more sophisticated algorithms, with longer run times, such as simulated 

annealing [37] and evolutionary algorithms [38].  Set cover (and its dual the hitting set problem) is one 

the most well-studied problems in computer science.  While experimental validation of complexity and 

solution optimality are outside the scope of this paper, our formulation of IDS sensor placement as an 

instance of set covering places our proposed approach on firm ground. 

Once IDS sensors are in place and alerts are generated, we can use the attack graph to correlate alerts, 

prioritize them, predict future attack steps, and respond optimally.  Figure 8 shows attack graph details for 

the testbed network in Figure 6, where each graph edge is a set of exploited vulnerabilities from one 

machine to another.  Within each subnet (the shaded regions in the figure), the machines have unrestricted 
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access to one another’s vulnerabilities.  Paths in the graph all lead to the assumed critical network assets 

(shown in the figure as crowns). 

We can prioritize alerts based on attack graph distance to critical assets.  That is, attacks closer to a 

critical asset are given higher priority, since they represent a greater risk.  At any point that an attack is 

detected, we can use to graph to predict next possible steps, and take specific actions such as blocking 

specific source/destination machines and destination port. 

Priority 0

Priority 1

Priority 2

Priority 3

Priority 4

 

Figure 8.  Priority of alerts for testbed network in Figure 6. 

As an example operational scenario, in Figure 8, assume that a security operator sees the Priority-4 

IDS alarm.  From the attack graph, he knows that this potential attack is still at least three steps away 

from mission-critical machines.  Because of the possibility of a false alarm, the operator might delay 

taking action initially.  Then, if he sees the Priority-3 alarm (one step closer to a critical machine), the 

attack graph shows that this is an immediate next possible step, providing further evidence that this is a 

real attack (versus a false alarm).  If the operator still delays action (e.g., after detail drilldown yields no 

conclusive result), a subsequent Priority-2 alarm (now only one step away from the critical machine) 

might then cause him to respond.  The attack graph shows exactly which source/destination machines and 
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ports the operator should block to prevent attacker access to the critical machine, while avoiding 

disruption of other potentially mission-critical network services.  This is the kind of highly focused attack 

response capability provided by our predictive TVA attack graphs coupled with deployed IDS sensors. 

6. Summary 

In our approach to network defense, we focus on critical paths through the network that lead to 

compromise of critical assets.  This analysis supports optimal placement of IDS sensors, prioritization of 

alerts, and effective attack response.  By analyzing the network configuration, assumed threat sources, 

and potential attacker exploits, we predict all possible ways of reaching critical assets (the attack graph).  

We then place IDS sensors to cover all attack graph paths, using the fewest number of sensors necessary.  

We describe a greedy algorithm for the NP-hard sensor placement (set cover) problem, which we 

illustrate through example.  We also prioritize the resulting IDS alerts based on attack graph distance to 

critical assets and provide predictive context for attack response. 
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