
 1

Optimal IDS Sensor Placement

And Alert Prioritization Using Attack Graphs

Steven Noel and Sushil Jajodia
Center for Secure Information Systems

George Mason University, Fairfax, Virginia

Abstract

We optimally place intrusion detection system (IDS) sensors and prioritize IDS alerts using attack

graph analysis. We begin by predicting all possible ways of penetrating a network to reach critical assets.

The set of all such paths through the network constitutes an attack graph, which we aggregate according

to underlying network regularities, reducing the complexity of analysis. We then place IDS sensors to

cover the attack graph, using the fewest number of sensors. This minimizes the cost of sensors, including

effort of deploying, configuring, and maintaining them, while maintaining complete coverage of potential

attack paths. The sensor-placement problem we pose is an instance of the NP-hard minimal set cover

problem. We solve this problem through an efficient greedy algorithm, which works well in practice.

Once sensors are deployed and alerts are raised, our predictive attack graph allows us to prioritize alerts

based on attack graph distance to critical assets.

1. Introduction

A variety of challenges make it inherently difficult to secure computer networks against attack.

Vulnerabilities in software design, implementation, and configuration are commonplace, and even the

Internet itself lacks security as an original design goal. Once a machine is connected to a network, its

security concerns become highly dependent on vulnerabilities across the network. Attackers can use

vulnerable machines as stepping stones to penetrate through a network and compromise critical systems.

In traditional network defense, IDS sensors are placed at network perimeters, and configured to detect

every attempt at intrusion. But if an attacker manages to avoid detection at the perimeter, and gain a

toehold into the network, attack traffic on the internal network is unseen at the perimeter. Also, in today’s

highly distributed grid computing, network boundaries are no longer clear.

Organizations have a desire to detect malicious traffic throughout their network, but may have limited

resources for IDS sensor deployment. Moreover, IDS usually report all potentially malicious traffic,

without regard to the actual network configuration, vulnerabilities, and mission impact. Given large

volumes of network traffic, IDS with even small error rates can overwhelm operators with false alarms.

Even when true intrusions are detected, the actual mission threat is often unclear, and operators are unsure

as to what actions they should take.

By knowing the paths of vulnerability through our networks, we can reduce the impact of attacks.

Traditional tools for network vulnerability assessment simply scan individual machines on a network and

report their known vulnerabilities. They give no clues as to how attackers might exploit combinations of

vulnerabilities among multiple hosts to advance an attack on a network. It remains a labor-intensive and

error-prone exercise for “connecting the dots” to predict vulnerability paths, and the number of possible

vulnerability combinations to consider can be overwhelming.

To address these weaknesses, we focus on protecting the network assets that are mission-critical. We

model the network configuration, including topology, connectivity limiting devices such as firewalls,

vulnerable services, etc. We then match the network configuration to known attacker exploits, simulating

attack penetration through the network and predicting attack paths leading to compromise of mission-

critical assets. This approach to network attack survivability is called Topological Vulnerability Analysis

(TVA) [1][2].

 2

The resulting set of all possible attack paths (organized as an attack graph) is a predictive attack

roadmap. The TVA attack graph assesses the true vulnerability of critical network resources, and

automates the traditionally labor-intensive analysis process. TVA also encourages easy “what-if”

analyses of candidate network configuration changes, and provides optimal network-hardening

recommendations that require minimal changes to the network.

Even after protective measures have been applied across the network, some residual vulnerability

usually remains. In such cases, TVA attack graphs can reduce the impact of attacks. The attack graph

guides the placement IDS sensors across the network to cover known paths of vulnerability. In this way,

all potentially malicious activity on critical paths is monitored. Conversely, no sensors are needed for

monitoring traffic that does not lie on critical paths, helping to reduce costs and operator overload. In

particular, our approach places sensors to cover all attack paths to critical assets, using the fewest number

of deployed sensors.

Further, through the predictive power of TVA attack graphs, we prioritize IDS alerts based on the

level of threat they represent to critical assets. For example, we can give lower priority to alerts that lie

outside critical attack paths. Particularly severe threats are those seen as coordinated steps as an attacker

incrementally advances through the network, especially if only a short distance from mission-critical

assets. The attack graph also provides the context needed for responding to an attack. When an operator

has strong evidence (e.g., multiple coordinated steps) of an intrusion, and knows the next network

vulnerabilities the attacker could exploit next, he has confidence in taking the appropriate (and highly

focused) actions for preventing further penetration.

In the next section, we review related work in attack graph analysis, IDS alert correlation, and sensor

placement. Section 3 gives an overview of our system for discovering network attack paths, covering the

paths with IDS sensors, and correlating and prioritizing the resulting alerts. Section 4 provides a technical

description of our method for generating attack graphs and aggregating them over multiple levels. In

Section 5, we describe our method for optimal placement of IDS sensors, which covers all network attack

paths using the minimum number of sensors. Section 5 also describes how we leverage the known

network attack paths to correlate and prioritize the resulting alerts. Finally, in Section 6 we summarize

these results.

2. Related Work

Early work in automated construction of attack graphs applied symbolic model checking tools [3][4].

But model checkers have significant scalability problems, a consequence of the exponential complexity of

the general state space they consider. Early graph-based approaches for analyzing attack combinations

suffered similar problems with state-space explosion [5][6].

Subsequently, scalable attack graph models have emerged [1][7]. Rather than explicitly enumerating

paths through state space, these models represent dependencies between state transitions (attacker

exploits), eliminating path redundancies and succinctly capturing all state information. These models

scale quadratically with the number of network hosts (ignoring man-in-the-middle attacks, which raise

complexity to n
3
). By representing fully-connected portions of the attack graph (e.g., within a subnet)

more efficiently, scalability is improved to linear within each defined portion [8]. Another approach is to

reduce graph complexity based on regularities in host configurations [9]. Efficient rule-based approaches

for generating attack graphs have also been demonstrated [10][11][12][13].

There have also been advances that help alleviate the information overload of attack graph analysis.

The approach in [8] includes highly interactive visualizations of clustered attack graphs, with high-level

overviews and detail drilldown, over multiple levels of detail. A different paradigm is applied in [14], in

which complex attack graphs are shown as adjacency matrices, simplified through matrix clustering

techniques. In [15], a number of complementary attack graph views, including hierarchically clustered

graphs, clustered matrices, and user-constrained graphs are coordinated for interactive visualization.

 3

Once attack graphs are generated, they can be further analyzed. In [16], attack graphs are used to find

optimal network configurations that prevent a given attack scenario while requiring the fewest changes to

the network. Attack graphs have also been used for computing metrics of overall network security

[17][18]. In [19], attack graph states are ranked for prioritizing security measures, and a rank-based

security metric is defined. Overall, advances in scalability, visualization, and post analysis help make

attack graph applications feasible for realistic sized networks. A more detailed review of various

developments in attack graph research (as of 2005) is given in [20].

Beyond analysis of vulnerability paths, attack graphs have been applied to IDS alert correlation

[21][22][23]. In fact, through our approach, attack graphs are most powerful when predicted paths (based

on vulnerabilities) are matched with actual detected attacks. This helps eliminate false positives, enables

prediction of missing alerts, makes alert correlation faster, and provides the context for attack response.

In [24], IDS alerts are correlated into multi-step attack scenarios, using attack graph distances based on

known network vulnerabilities.

Despite these advances, a key step has been overlooked. In particular, previous work does not

address the placement of IDS sensors within the network infrastructure to cover known vulnerability

paths. When IDS sensor placement is addressed in the literature, it is usually in the context of general

architectures for distributed intrusion detection, such as [25]. One paper has applied network attack

modeling (based on logic programming) for placing IDS sensors, for the limited case of Internet Protocol

(IP) spoofing attacks. [26].

In [27], a model checker is used to find a minimal coverage of attack paths, using IDS or other

protection measures. This approach provides a weak kind of optimality, giving the minimum set of

measures that block the attacker from the end goal (the unsafe state of the model checker), assuming that

each such measure is successful. However, this is not a safe assumption, given the high likelihood of

missed IDS detections. In other words, with such minimum coverage, if only one attack is missed, the

remaining uncovered paths may readily allow network penetration to critical network assets. While such

minimal coverage may be appropriate for assured hardening measures such as software patches and

firewall rules, it is clearly insufficient for IDS deployment. In contrast, we cover all possible attack paths

(not just a minimum subset), using a minimum number of sensors while maintaining polynomial

complexity.

Further, the approach in [27] does not identify how a minimum set of attack paths actually map to

IDS sensor deployment in the network infrastructure. For example, an attack from host A to host B may

pass through multiple network devices. But given all possible paths and network devices, on which

physical device(s) should we deploy sensors? This is precisely the problem that we address.

In particular, we assign IDS sensors to network devices so that they cover all known paths of

vulnerability through the network. If desired, we can focus these paths based on known threat sources

and critical network assets. Our sensor placement is optimal, in that only a minimum number of sensors

are needed. Once sensors are placed, we use our predictive attack graph to prioritize the resulting IDS

alerts according to distance from critical assets. Our approach was first proposed at the Cyberspace

Research Workshop [28], organized by the newly formed Air Force Cyber Command.

3. System Overview

Because attackers can exploit vulnerabilities as stepping stones to new vantage points, considering

network components and vulnerabilities in isolation is clearly insufficient. We have implemented a

comprehensive TVA tool that discovers multi-step attacks, modeling network penetration as real attackers

might do. This is a custom tool, written in the Java programming language, with full-featured user

interface and attack graph visualization capabilities. This TVA tool computes an attack graph showing all

possible paths through a network. The approach that we propose here is to place IDS sensors to cover

these predicted TVA paths, and to use this predictive context for prioritizing IDS alerts.

 4

In the TVA approach, a network is scanned to catalog hosts, their operating systems, application

programs, and vulnerable network services. We also capture network connectivity, including the effects

of connectivity-limiting devices such as firewalls and router access control lists (ACLs). With the

resulting network configuration, a database of modeled attacker exploits, and a specification of threat

origin and critical network assets, we compute the attack graph comprising all known attacks through the

network.

In particular, from network scans our TVA tool builds a model of the network configuration. This

configuration is then subjected to simulated attacks from our TVA exploit database. Exploits are modeled

in terms of preconditions and postconditions. When all preconditions for an exploit are met (e.g., from

the initial network state), the exploit is successful, and its postconditions are induced. These

postconditions in turn provide potential preconditions for other exploits. The resulting set of exploits,

joined by their precondition/postcondition dependencies, forms the attack graph, predicting all possible

attacks through the network. We integrate with popular network scanning tools (e.g., Nessus [29], Retina

[30], and FoundScan [31]) to automate the network model building process. We also continually monitor

sources of reported vulnerabilities, keeping the TVA exploit database current with respect to emerging

threats.

TVA attack graphs can follow pre-defined attack scenarios, e.g., based on assumed threat sources

(attack starting points) or critical assets to be protected (attack ending points). We can then constrain the

attack graph with respect to these starting and/or ending points. This allows an organization to focus on

realistic threat sources, while insuring the safety of critical assets. Algorithmically, these constraints are

applied in two passes. The forward pass traverses the graph in a forward direction from the starting

point(s), and the backward pass traverses the graph in a backward direction from the ending point(s).

These passes can be applied independently, to constrain the graph in one direction or the other, or

combined as a joint constraint.

In their low-level form, TVA attack graphs for realistic sized networks can be large and complex.

Our approach aggregates attack graphs at various levels of detail, e.g., host, subnet, etc. We then apply

analysis to the appropriate level of graph abstraction, to help keep complexity manageable. In fact, we

aggregate elements of the network model in advance, so that attack graph computations are more

efficient. Our aggregated structures retain all underlying low-level information, so that no information is

lost compared to the full low-level attack graph. This information is also available for interactive

drilldown in attack graph visualization.

Once we create the TVA attack graph predicting all possible paths through the network, we can

formulate optimal network defenses. Of course, the first step is to reduce risk by hardening the network

in advance of attack [16]. Still, given requirements for mission-critical services, availability of patches,

etc., some residual vulnerability paths often remain on a network. The next step is to deploy IDS sensors

to monitor traffic and detect potentially malicious activity along these paths.

In fact, our proposed placement of IDS sensors is optimal, in the sense that a network’s attack graph

is entirely covered, using the fewest required number of sensors. We argue that this sensor placement

problem is an instance of the classical set cover problem [32], which is NP-hard. To solve this problem,

we apply a polynomial-time greedy heuristic that is known to give good solutions in practice.

Once sensors are deployed and the IDS starts generating alerts, our attack graphs provide the

necessary context for correlating and prioritizing those alerts. For example, if two alerts lie in a sequence

along the attack graph, there is strong potential that these are multiple steps along a single attack, and

should be taken very seriously. Further, we can predict the minimum number of future steps before the

attacker reaches a given critical network asset, and can prioritize the alert accordingly. Based on our

knowledge of possible attack paths, we can formulate optimal responses for stopping any further progress

by the attacker.

 5

4. Attack Graph Generation and Aggregation

Figure 1 shows a small network, which we have implemented in a laboratory testbed for

demonstrating the automated generation of attack graphs via our TVA tool. In this network, the purpose

of the firewall is to protect the internal network from outside attack. It is configured to allow only

hypertext transfer protocol (HTTP) traffic to the internal web server, and all other traffic initiated from

the outside is blocked. The web server is running a vulnerable version of Microsoft Internet Information

Server (IIS), which is reachable from the outside through the firewall. The mail server has vulnerable

software deployed as well, although the firewall protects it from direct attack from the outside. The

question we pose is whether there are paths that allow the outside attacker to compromise the mail server.

Only http traffic

to Web Server

allowed

Figure 1. Small testbed network for demonstrating attack graph analysis.

To capture the network configuration for Figure 1, we use the output of the open-source Nessus

vulnerability scanner. First, we scan from the outside through the firewall, targeting the internal network.

We then scan the internal network behind the firewall, to see the attacker’s options once he gains entry to

the internal network. When then merge the resulting scan results into an overall TVA network model.

This model then serves as the initial conditions for a TVA attack simulation, in which we apply a

database of simulated exploits derived from Nessus vulnerabilities.

Figure 2. Attack graph for testbed network in Figure 1.

 6

The TVA attack simulation begins on the outside machine, and ends with the compromise of the mail

server. Figure 2 shows the resulting attack graph. Yellow boxes are initial network conditions, and blue

ovals are attacker exploits. Here, a condition of the form nessus.xxxxx(from, to) represents the fact that

the from machine can connect to a service on the to machine, and that this service has a particular xxxxx

vulnerability detected by Nessus. So for example, initial condition nessus.10671(attack, web) means that

the web server has Nessus vulnerability number 10671 (IIS Remote Command Execution) [33] (also

identified as CVE-2001-0333 and CVE-2001-0507 under MITRE’s Common Vulnerabilities and

Exposures [34]), and that the attack machine can connect to that vulnerable service on the web server.

In Figure 2, network conditions of the form execute(machine) represent the attacker’s ability to

execute arbitrary code on a particular machine. The attacker can initially execute code on his own

machine, as indicated by the execute(attack) in a yellow box. A condition such as execute(web) is

induced as a postcondition of one or more exploits (in this case, by 3 different exploits), so it does not

appear in a yellow box (i.e., not an initial condition). Conditions defined as overall attack goals (in this

case, executing code with superuser privilege level on the mail server) are shown in red octagons.

So in Figure 2, the iis_decode_bug(attack, web) exploit requires 2 preconditions to be met, i.e.,

execute(attack) and nessus.10671(attack, web). Since these are part of the initial network conditions, this

exploit is successful, and yields the postcondition execute(web). i.e., the attacker can now execute code on

the web server. Two other exploits (iis_dir_traversal and msadcs_dll) are also possible from the attack

machine against the web server. Once the attacker can execute code on the web server, four subsequent

exploits are possible, each from the web server to the mail server. Two of those (ntalk_detect and

wu_ftpd_site_exec) give the ability to execute code as superuser on the mail server, i.e., the goal has been

reached. The other two (telnet and rlogin) give the ability to execute code, but without superuser

privilege level. Then two subsequent exploits (wu_ftpd_site_exec and ntalk_detect) elevate attacker

privilege to superuser on the mail server.

The attack graph allows us to reason about network defense strategies. For example, in Figure 2,

removing Nessus vulnerabilities 10671, 10537, and 10357 on the web server would stop the attack. Or,

we can conclude that fixing mail server vulnerabilities 10280 and 10205 are essentially irrelevant

hardening options, i.e., 10452 and 10168 would need to be fixed anyway, and together will successfully

prevent the attack (assuming it is sufficient to block the attacker from gaining superuser privilege).

Of course in practice, network attack graphs are usually much more complex than Figure 2. For

example, Figure 3 is an attack graph generated by our TVA tool for an operational network of only 17

machines, across 4 subnets, with between 2 and 6 exploitable vulnerabilities per machine. Despite the

complex relationships in this graph, you can still see dependency patterns among exploits. There are

densely connected parts of the graph, connected by relatively sparse sets of edges. These patterns are in

fact a consequence of regularities in the network configuration, of which we can take advantage for

summarizing attack patterns.

These regularities are a direct reflection of how the network is organized, and are a natural choice for

aggregating the attack graph into multiple levels of abstraction. This is illustrated in Figure 4. Here,

Figure 4(a) is the original attack graph, showing all details. In Figure 4(b), the graph has been aggregated

to the level of machines and sets of exploits between them. For example, the circled region contains 4

machines, with exploit sets between each pair of them. In other words, all the network conditions for a

particular machine in Figure 4(a) are collapsed to a single “machine” vertex in Figure 4(b), and all the

exploits between a particular pair of machines (in each direction if applicable) are collapsed to a single

machine-to-machine exploit set in Figure 4(b). Figure 4(b) thus represents a summary of Figure 4(a),

providing more of an overview of the attack.

 7

Figure 3. More complex attack graph for 17-machine operational network.

8/29/2007

(a)
(b)

(c)

(d)

Figure 4. Aggregation of complex attack graph over multiple levels of detail.

 8

In Figure 4(b), the circled portion of the attack graph is fully connected, i.e., this sub-graph forms a

clique. This is because these machines are in the same subnet (broadcast domain), so that they have

unrestricted access to one another’s vulnerable services. We can incorporate this knowledge of the

network structure when building the input network model. Within such a fully connected sub-graph, it is

sufficient to represent only those exploits to which a machine is vulnerable, since all machines in that sub-

graph can exploit those vulnerabilities. We call such a set of machines a protection domain [8], which

forms a natural level of aggregation, as shown in Figure 4(c). Using this representation, graph size scales

linearly within a protection domain (and remains quadratic across domains).

To reduce analysis complexity even further, we can aggregate machines in a protection domain to a

single graph vertex, as shown in Figure 4(d). Here, we also aggregate the machine exploit sets to a single

set between each pair of domains. Complexity still scales quadratically, but now as a function of the

number of protection domains rather than the number of machines, thus greatly reducing complexity.

With this high-level view of the attack graph, we can very efficiently reason about network defense

strategies. For example, from Figure 4 (d), we immediately conclude that preventing the 2 exploits into

Subnet 1 will prevent the attack. Or, if that is not possible, a second choice is to prevent the 2 exploits

from Subnet 1 to Subnet 2, and the 2 exploits from Subnet 1 to Subnet 3. Other options are possible,

though they involve fixing a greater number of vulnerabilities, and allow deeper penetration by the

attacker.

Figure 5. TVA tool attack graph visualization for 8-machine testbed network.

 9

No information is lost in our aggregation of the network model and attack graph. Indeed, it is entirely

reversible, so that all the details of the low-level attack graph are available. This is illustrated in Figure 5,

which demonstrates more advanced visualization capabilities of our TVA tool, for an 8-machine testbed

network. Here, a variety of levels of detail are shown in a single view of the attack graph. With the

interactive visualization capabilities provided by our TVA tool, the analyst can start with a high-level

overview of the attack, and drill down as needed for particular attack details.

As our TVA tool shows in Figure 5, there are exploits from the outside, to the DMZ web server (one

exploit) and to the DMZ mail server (2 exploits). Once inside the DMZ, the attacker can exploit the web

server in 41 different ways, and exploit the mail server in 15 different ways. Once the DMZ mail server

is compromised, the attack can proceed from there to the mail server in the Server LAN (via 2 different

exploits). Inside the Server LAN, the mail server can be compromised 160 different ways, and the web

server can be compromised 158 ways. Once the Server LAN web server is compromised, the attacker can

launch a single exploit against the database server (in the Database LAN), which is the defined goal of the

attack. The visualization drilldown shows the full details (preconditions and postconditions) for this

exploit.

5. IDS Sensor Placement and Alert Prioritization

At this point in the network defense process, our TVA tool has captured the network configuration,

used it to predict all possible paths of vulnerability through the network, and applied hardening measures

to help reduce known paths. But because of real-world mission and operational constraints, we are

unlikely to eliminate all paths. Our next line of defense is to rely on IDS.

Now, given our knowledge of the network configuration and residual paths of vulnerability, where

should we place IDS sensors so as to monitor all these paths? Moreover, what placement will cover all

critical paths with the fewest number of sensors, to minimize our deployment costs? The residual attack

graph defines the sources and destinations of traffic to be monitored. Then, through analysis of network

topology, we identify sensor locations that cover the critical paths.

Network
Attack

Graphα β

γ δ

ε

Figure 6. Testbed (hybrid real and simulated) network and its high-level attack graph.

 10

Consider the testbed network in Figure 6, which we implement through a combination of real and

replicated machine scans, and simulated network connectivity and firewall effects. There are 8 subnets,

with 10-20 hosts in each subnet, and routers (and the internet backbone) providing connectivity among

the subnets. There are vulnerabilities on many of the network hosts. Though not shown explicitly, the

firewalls limit connectivity and help protect the network. Still, vulnerabilities remain on the network, and

many are stepping stones, giving new vantage points for further penetration.

The right side of Figure 6 is a high-level view of attacks through this network, based on TVA tool

results. We assume that Subnet 3 contains critical network assets to be protected. The attack graph

shows all possible paths leading to Subnet 3, at the subnet-to-subnet (protection domain) level. Here, an

edge means there is at least one exploit between given protection domains. While other paths may exist

through this network, only the ones shown are relevant to the protection of Subnet 3. So it is precisely

these paths that need to be monitored by the IDS.

1→4 4→5

1→2

2→5

5→3

α

β

γ

δ

ε

Figure 7. Optimal sensor placement for testbed network in Figure 6.

Now, given our knowledge of critical paths through the network, we can analyze the network

topology for placing sensors to cover all paths. To minimize costs, we seek to cover all critical paths (the

attack graph) using the least number of sensors. As we have defined it, this optimal sensor placement is

an instance of the classical set cover problem [32]. In set cover, we are given certain sets of elements,

and they may have elements in common. The problem is to choose a minimum number of those sets, so

that they collectively contain all the elements. In this case, the elements are the edges (between

 11

protection domains) of the attack graph, and the sets are IDS sensors deployed on particular network

devices. Each IDS monitors a given set of edges, i.e., can see the traffic between the given

attacker/victim machines.

Consider Figure 7, which builds from the testbed network in Figure 6. Here, through the network

topology, we trace the routes of each subnet-to-subnet edge of the attack graph. For example, the

vulnerable paths from Subnet 1 to Subnet 2 are shown as a red route, from Subnet 1 to Subnet 4 as a blue

route, etc. The problem is then the selection of a minimum set of routers (sensors) that covers all the

vulnerable paths in the attack graph.

Set cover is known to be computationally hard, one of Karp’s original 21 NP-complete problems [35].

Fortunately, there is a well known polynomial-time greedy algorithm for set cover that gives good results

in practice [32]. The greedy algorithm for set covering follows this rule: at each stage, choose the set that

contains the largest number of uncovered elements.

In our case, each router can see traffic for a subset of the entire attack graph, i.e., each router covers

certain attack graph edges. The problem is then to choose a minimum set of routers that cover all edges.

From Figure 7, we have the following:

• Router A covers {(1,2), (1,4), (4,5)} = {α, β, δ}

• Router B covers {(1,2), (4,5)} = = {α, δ}

• Router C covers {(1,2), (4,5), (2,5)} = = {α, δ, γ}

• Router D covers {(2,5), (4,5), (5,3)} = = {γ, δ, ε}

Here, the element (x, y) means an attack graph edge set from Subnet x to Subnet y.

A refinement of the greedy algorithm is to favor large sets that contain infrequent elements. In this

example, Router A is a large set (3 elements) with the infrequent element β = (1,4), so we choose it first.

In the next iteration, we choose Router D, which has the largest number of uncovered elements, i.e.,

γ = (2,5) and ε = (5,3). At this point, we have covered all 5 elements (edges in the attack graph). Our

sensor-placement solution is thus complete, shown in Figure 7 as red eyes at the optimal sensor locations

Router A and Router D.

In this instance, we have in fact found the actual optimal solution. In general, the greedy algorithm

approximates the optimal solution within a factor of ln(n), for n elements to be covered, though in

practice it usually does much better than this. In our case, n is the number of attack graph edges,

aggregated by protection domains, which is usually much smaller than the number of edges between

individual machines. The greedy algorithm has been shown to be essentially the best possible

polynomial-time approximation algorithm for general set cover [36]. However, for restricted cases in

which each element (per-domain edge) occurs in at most f sets (routers), a polynomial-time solution is

possible that approximates the optimum to within a factor of f.

Using appropriate data structures, the greedy algorithm for set cover can be implemented in O(n),

where n is again the number of per-domain attack graph edges. More nearly optimal solutions for set

cover may be possible through more sophisticated algorithms, with longer run times, such as simulated

annealing [37] and evolutionary algorithms [38]. Set cover (and its dual the hitting set problem) is one

the most well-studied problems in computer science. While experimental validation of complexity and

solution optimality are outside the scope of this paper, our formulation of IDS sensor placement as an

instance of set covering places our proposed approach on firm ground.

Once IDS sensors are in place and alerts are generated, we can use the attack graph to correlate alerts,

prioritize them, predict future attack steps, and respond optimally. Figure 8 shows attack graph details for

the testbed network in Figure 6, where each graph edge is a set of exploited vulnerabilities from one

machine to another. Within each subnet (the shaded regions in the figure), the machines have unrestricted

 12

access to one another’s vulnerabilities. Paths in the graph all lead to the assumed critical network assets

(shown in the figure as crowns).

We can prioritize alerts based on attack graph distance to critical assets. That is, attacks closer to a

critical asset are given higher priority, since they represent a greater risk. At any point that an attack is

detected, we can use to graph to predict next possible steps, and take specific actions such as blocking

specific source/destination machines and destination port.

Priority 0

Priority 1

Priority 2

Priority 3

Priority 4

Figure 8. Priority of alerts for testbed network in Figure 6.

As an example operational scenario, in Figure 8, assume that a security operator sees the Priority-4

IDS alarm. From the attack graph, he knows that this potential attack is still at least three steps away

from mission-critical machines. Because of the possibility of a false alarm, the operator might delay

taking action initially. Then, if he sees the Priority-3 alarm (one step closer to a critical machine), the

attack graph shows that this is an immediate next possible step, providing further evidence that this is a

real attack (versus a false alarm). If the operator still delays action (e.g., after detail drilldown yields no

conclusive result), a subsequent Priority-2 alarm (now only one step away from the critical machine)

might then cause him to respond. The attack graph shows exactly which source/destination machines and

 13

ports the operator should block to prevent attacker access to the critical machine, while avoiding

disruption of other potentially mission-critical network services. This is the kind of highly focused attack

response capability provided by our predictive TVA attack graphs coupled with deployed IDS sensors.

6. Summary

In our approach to network defense, we focus on critical paths through the network that lead to

compromise of critical assets. This analysis supports optimal placement of IDS sensors, prioritization of

alerts, and effective attack response. By analyzing the network configuration, assumed threat sources,

and potential attacker exploits, we predict all possible ways of reaching critical assets (the attack graph).

We then place IDS sensors to cover all attack graph paths, using the fewest number of sensors necessary.

We describe a greedy algorithm for the NP-hard sensor placement (set cover) problem, which we

illustrate through example. We also prioritize the resulting IDS alerts based on attack graph distance to

critical assets and provide predictive context for attack response.

Acknowledgements

This material is based upon work supported by Homeland Security Advanced Research Projects

Agency under the contract FA8750-05-C-0212 administered by the Air Force Research

Laboratory/Rome; by Air Force Research Laboratory/Rome under the contract FA8750-06-C-0246; and

by Federal Aviation Administration under the contract DTFAWA-04-P-00278/0001.

References

1. S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis of Network Attack Vulnerability,” in

Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A. Lazarevic

(eds.), Springer, 2005.

2. S. Jajodia, S. Noel, “Topological Vulnerability Analysis: A Powerful New Approach for Network

Attack Prevention, Detection, and Response,” in Indian Statistical Institute Monograph Series, World

Scientific Press, under review.

3. R. Ritchey, P. Ammann, “Using Model Checking to Analyze Network Vulnerabilities,” in

Proceedings of the IEEE Symposium on Security and Privacy, Berkeley, California, 2000.

4. O. Sheyner, J. Haines, S. Jha, R. Lippman, J. Wing, “Automated Generation and Analysis of Attack

Graphs,” in Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California, 2002.

5. D. Zerkle, K. Levitt, “Netkuang – A Multi-Host Configuration Vulnerability Checker,” in

Proceedings of the 6th USENIX Unix Security Symposium, San Jose, California, 1996.

6. L. Swiler, C. Phillips, D. Ellis, S. Chakerian, “Computer-Attack Graph Generation Tool,” in

Proceedings of DARPA Information Survivability Conference & Exposition II, 2001.

7. P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, Graph-Based Network Vulnerability Analysis,” in

Proceedings of 9
th
 ACM Conference on Computer and Communications Security, Washington, DC,

2002.

8. S. Noel, S. Jajodia, “Managing Attack Graph Complexity through Visual Hierarchical Aggregation,”

in Proceedings of the ACM CCS Workshop on Visualization and Data Mining for Computer Security,

Fairfax, Virginia, 2004.

9. W. Li, An Approach to Graph-Based Modeling of Network Exploitations, PhD dissertation,

Department of Computer Science, Mississippi State University, 2005.

10. V. Swarup, S. Jajodia, J. Pamula, “Rule-Based Topological Vulnerability Analysis,” in Computer

Network Security, selected papers from the 3
rd

 International Workshop on Mathematical Methods,

Models, and Architectures for Computer Network Security, 2005.

 14

11. X. Ou, W. Boyer, M. McQueen, “A Scalable Approach to Attack Graph Generation,” in Proceedings

of the 13
th
 ACM Conference on Computer and Communications Security, Alexandria, Virginia, 2006.

12. M. Danforth, Models for Threat Assessment in Networks, PhD dissertation, University of California,

Davis, 2006.

13. S. Bhattacharya, S. Ghosh, “An Artificial Intelligence Based Approach for Risk Management Using

Attack Graph,” in Proceedings of the International Conference on Computational Intelligence and

Security, Harbin, China, 2007.

14. S. Noel, S. Jajodia, “Understanding Complex Network Attack Graphs through Clustered Adjacency

Matrices,” in Proceedings of the 21
st
 Annual Computer Security Applications Conference, Tucson,

Arizona, 2005.

15. S. Noel, M. Jacobs, P. Kalapa, S. Jajodia, “Multiple Coordinated Views for Network Attack Graphs,”

in Proceedings of the Workshop on Visualization for Computer Security, Minneapolis, Minnesota,

2005.

16. L. Wang, S. Noel, S. Jajodia, “Minimum-Cost Network Hardening Using Attack Graphs,” Computer

Communications, 29, 2006.

17. L. Wang, A. Singhal, S. Jajodia, “Measuring the Overall Security of Network Configurations Using

Attack Graphs, in Proceedings of 21
st
 IFIP WG 11.3 Working Conference on Data and Applications

Security, Redondo Beach, California, 2007.

18. J. Pamula, S. Jajodia, P. Ammann, V. Swarup, “A Weakest-Adversary Security Metric for Network

Configuration Security Analysis,” in Proceedings of the 2
nd

 ACM Workshop on Quality of Protection,

Alexandria, Virginia, 2006.

19. V. Mehta, C. Bartzis, H. Zhu, E. Clarke, J. Wing, “Ranking Attack Graphs,” in Proceedings of Recent

Advances in Intrusion Detection, Hamburg, Germany, 2006.

20. R. Lippmann, K. Ingols, An Annotated Review of Past Papers on Attack Graphs, Technical Report

ESC-TR-2005-054, MIT Lincoln Laboratory, 2005.

21. P. Ning, Y. Cui, D. Reeves, “Constructing Attack Scenarios through Correlation of Intrusion Alerts,”

in Proceedings of the 9
th
 ACM Conference on Computer and Communications Security, Washington

DC, 2002.

22. L. Wang, A. Liu, S. Jajodia, “Using Attack Graphs for Correlating, Hypothesizing, and Predicting

Intrusion Alerts,” Computer Communications, 29, 2006.

23. S. Mathew, R. Giomundo, S. Upadhyaya, M. Sudit, A. Stotz, “Understanding Multistage Attacks by

Attack-Track based Visualization of Heterogeneous Event Streams,” in Proceedings of the 3
rd

International Workshop on Visualization for Computer Security, Alexandria, Virginia, 2006.

24. S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion Events and Building Attack Scenarios

through Attack Graph Distances,” in Proceedings of the 20
th
 Annual Computer Security Applications

Conference, Tucson, Arizona, 2004.

25. C. Clark, W. Lee, D. Schimmel, D. Contis, M. Koné, A. Thomas, “A Hardware Platform for Network

Intrusion Detection and Prevention,” in Proceedings of 3
rd

 Workshop on Network Processors &

Applications, Madrid, Spain, 2004.

26. M. Rolando, M. Rossi, N. Sanarico, D. Mandrioli, “A Formal Approach to Sensor Placement and

Configuration in a Network Intrusion Detection System,” in Proceedings of the ACM International

Workshop on Software Engineering for Secure Systems, Shanghai, China, 2006.

 15

27. S. Jha, O. Sheyner, J. Wing, Minimization and Reliability Analyses of Attack Graphs, Technical

Report CMU-CS-02-109, School of Computer Science, Carnegie Mellon University, 2002.

28. S. Noel, S. Jajodia, “Attack Graphs for Sensor Placement, Alert Prioritization, and Attack Response,”

Cyberspace Research Workshop, Shreveport, Louisiana, November 2007.

29. Nessus vulnerability scanner, Tenable Network Security, http://www.nessus.org/nessus/.

30. Retina vulnerability scanner, eEye Digital Security, http://www.eeye.com/html/products/Retina/.

31. FoundScan vulnerability scanner, Foundstone (a division of McAfee), http://www.mcafee.com/us/

local_content/datasheets/ds_foundtsone60.pdf.

32. T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 2
nd

 Edition, MIT Press and

McGraw-Hill, 2001.

33. Nessus vulnerability number 10671 (IIS Remote Command Execution), Tenable Network Security,

http://www.nessus.org/plugins/index.php?view=single&id=10671.

34. Common Vulnerabilities and Exposures (CVE), The MITRE Corporation, http://cve.mitre.org/.

35. R. Karp, “Reducibility among Combinatorial Problems,” in Complexity of Computer Computations,

1972.

36. U. Feige, “A Threshold of Ln N for Approximating Set Cover,” Journal of the ACM, 45(4), 1998.

37. S. Skiena, The Algorithm Design Manual, Springer-Verlag, 1997.

38. R. Kalapala, M. Pelikan, A. Hartmann, Hybrid Evolutionary Algorithms on Minimum Vertex Cover

for Random Graphs, MEDAL Report No. 2007004, University of Missouri–St. Louis, 2007.

