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ABSTRACT

The Trusted Execution Environment (TEE) has been widely used to
protect the security-sensitive sensing systems on Internet-of-Thing
(IoT) devices. In the TEE systems, the execution environment is
securely divided into a normal domain and a higher privileged se-
cure domain which executing sensing systems through hardware.
One common way to achieve the protection is implementing the
sensitive functions of the sensing systems as trusted applications
(TAs) in the well-isolated secure domain. Users in rich OS have to
call TAs through the client applications (CAs), and the invocations
must pass through the rich OS kernel. However, an untrusted rich
OS may launch man-in-the-middle attacks on the communication
between the CAs and TAs, and the misuse of cross-domain commu-
nication channel is becoming one severe threat on the TEE systems.
In this paper, we develop a defense system named TrustICT to con-
struct a lightweight trusted interaction channel between CAs and
TAs without modifying existing TEE architecture. The main idea is
to block attacks on the cross-domain interactions via dynamically
setting the access permission of domain-shared memory, locking it
from kernel mode and unlocking it only to legal CAs in the user
mode. Particularly, we propose a multi-core scheduling strategy to
defeat potential attacks from all privileged cores. Compared to ex-
isting cryptography-based methods, TrustICT dramatically reduces
the system overhead since it does not require time-consuming cryp-
tographic computation or sophisticated real-time kernel protection.
We implement a prototype of TrustICT on a Freescale i MX6Quad
platform with the OP-TEE software system and evaluate its impacts
on rich OS and the cross-domain transactions.
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1 INTRODUCTION

ARM TrustZone is the enclave technology originally developed
by ARM company. It was introduced into Cortex-A processors in
2004 [49], which are widely used for mobile devices in the embedded
market. ARM also launches Cortex-M series processors (i.e. the
Cortex-M23 [8] and the Cortex-M33 [9]) equipped with TrustZone
technology to support low-power IoT devices. For example, low-
power micro-controllers such as . MX-RT500 [45], . MX-RT600 [46],
nRF5340 [44], STM32L5 [55] and etc., have deployed these Cortex-M
series processors to improve the security of the IoT devices.

The ARM TrustZone technology utilizes hardware-based isola-
tion to construct Trusted Execution Environment (TEE) systems
to ensure the security of sensitive assets. It divides the execution
environment into a normal privileged non-secure domain (i.e., nor-
mal domain) and a higher privileged secure domain. The untrusted
OS (also known as rich OS) runs in the normal domain along with
normal applications. Meanwhile, the TEE OS runs in the secure
domain, along with a limited number of trusted applications (TAs)
to provide dedicated security services. The untrusted OS in the
normal domain cannot access the resources of the secure domain.

Due to the increasing numbers of vulnerabilities in the untrusted
OS and the growing attention to the security of the sensing sys-
tem, Internet-of-Thing (IoT) device developers begin to protect the
security-sensitive sensing systems with the TrustZone-based TEE
systems, i.e., deploying the sensitive assets of the sensing systems
in the secure domain. For instance, Brasser et al. regulate the usage
of sensors and peripherals in restricted spaces [16]. SeCloak ensures
reliable control of peripherals and sensors even when the platform
software is compromised [36]. Liu et al. implement a trusted GPS
sensor to support trusted reading operation [38]. TLR protects Mi-
crosoft’s NET framework which is optimized for sensor networks
and wearable devices for mobile devices [52]. VirtSense implements
an ARM TrustZone based virtual sensing system [39].
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In the TEE systems, the sensitive assets in the secure domain are
accessible to the normal domain only via invoking the TAs. Each
TA usually has a counterpart called client application (CA) running
in the normal domain, and the CA is responsible for interacting
with the TA. Although the execution of TAs is well protected in the
secure domain, the existing TEE systems lack a sound mechanism
to secure the access of TAs. Since the transaction between CAs
and TAs must go through the untrusted rich OS, the attackers may
achieve illegal access to the TAs by compromising the cross-domain
communication channel. For instance, a set of vulnerabilities on the
cross-domain communication channel named BOOMERANG [40]
can be exploited by attackers without kernel privilege to misuse the
TAs, e.g., deceiving the TAs to process deliberately crafted data in
the fake memory addresses. Moreover, attackers can continuously
invoke TAs with crafted arguments to discover and exploit the
vulnerabilities in the TEE systems [18, 22, 34, 35, 51]. Therefore, it
is critical to prevent the cross-domain interaction interface for TEE
systems from being misused by attackers.

Several efforts have been made to protect the cross-domain in-
teractions. Android Sandbox [4] and SEAndroid [54] mechanisms
have been used to ensure only applications with specific privi-
leges can interact with TAs [25]. Machiry et al. [40] resolve the
BOOMERANG vulnerabilities by checking the correctness of the
addresses with the current process’s memory information provided
by rich OS. However, all these solutions rely on the security of rich
OS, which might also be compromised in real world. SeCReT [33]
aims to construct a secure data channel between CAs and TAs with-
out trusting rich OS. It encrypts the transaction data and restricts
the encryption keys to be only accessible to legal CAs in the user
space (but not the privileged rich OS kernel) by interposing each
mode switch operation between the user space and the kernel space
of rich OS. However, the time-consuming encryption and decryp-
tion operations in SeCReT noticeably slow down the entire system.
Moreover, to protect the inserted trampoline code, SeCReT relies
on heavy real-time kernel protection solutions (e.g., TZ-RKP [10])
that need to hook and monitor each page table operation, further
increasing its computation overhead. In addition, SeCReT is a so-
lution designed on single-core platforms, while modern mobile
devices are popularly equipped with the multi-core processors. It is
difficult to directly apply SeCReT on multi-core platforms, since the
performance will sharply degrade due to the frequent kernel-user
mode switching and the encryption and decryption operations.

In this paper, we develop a lightweight trusted interaction mech-
anism named TrustICT between CAs and TAs on multi-core plat-
forms. TrustICT achieves the trusted cross-domain communication
channel by protecting the access to the Domain-shared Mem-
ory (DsM), i.e., memory designated for cross-domain communica-
tion [47], through the ARM TrustZone memory isolation mecha-
nism named TrustZone Address Space Controller (TZASC). Specifi-
cally, TrustICT hooks the mode switch operations in rich OS and
traps into the secure domain. The manager process executed in
the secure domain dynamically controls the access permission of
DsM through TZASC and it can ensure (i) the protected DsM mem-
ory can only be read and written by legal CAs, but not rich OS
or illegal user applications, and (ii) the TAs only process data in
the protected DsM memory and return data to the protected DsM
memory. In other words, it unlocks the DsM region by setting its

JWang, YWang, L.Lei, K.Sun, J.Jing and Q.Zhou

access permission as normal domain accessible in the kernel-to-user
mode switch hooks (hereinafter referred to as K-U hooks) to allow
legal CAs’ access when rich OS switches to the user mode, and
it locks the DsM region by setting its access permission as nor-
mal domain inaccessible in the user-to-kernel mode switch hooks
(hereinafter referred to as U-K hooks) to prevent normal domain’s
access once the rich OS switches into the kernel mode. Compared
to the cryptographic operations, it is much faster to control the
access permission of DsM by setting a couple of registers.

When enabling TrustICT on multi-core platforms, we make four
major efforts. First, we introduce a lightweight hook-protecting so-
lution instead of relying on the real-time kernel protection scheme.
It leverages TZASC to prevent the hooking codes from being tam-
pered by the untrusted privileged kernel (i.e., setting the associated
memory as non-writable to normal domain). Also, it prevents the
hooks from being bypassed via intermittent value checking, rather
than interposing each page table operation. This is based on two
observations: (i) it only needs to prevent the bypassing of U-K
hooks !, and only when certain DsM is unlocked; and (ii) the U-K
mode switch is accomplished by hardware components (i.e., CPU
and MMU) with the help of a few exception-associated registers
and mappings, which are non-writable in the user space. The U-K
hooks will definitely be executed if the exception-associated val-
ues are correctly configured. As such, we check the correctness of
exception-associated values before unlocking certain DsM in the
K-U hooks.

Second, TrustICT deters the direct damages on the protected
DsM from the privileged rich OS by unlocking the DsM only when
none of the cores are running in the kernel mode of the normal
domain. However, this scheme might affect the DsM accessing
operations in the legal CAs, since they are running in the user
mode of normal domain and are unaware of the DsM’s locking state
change (which is controlled in the secure domain). We introduce
a polling mechanism to resolve this problem, i.e., repeating the
read and write operations of CAs until the corresponding DsM
regions are correctly read and written. TrustICT also includes an
optimization solution to prevent the DsM accessing operations from
being stuck by the kernel-stuck cores (e.g., the cores retaining in
the kernel-mode idle state).

Third, TrustICT unlocks the protected DsM only to legal CAs and
prevents the indirect disruption launched through manipulating the
execution of legal CAs. Particularly, it introduces three protection
measures: (i) Once a CA process is started, the code integrity check
is conducted. If the check passes, the CA’s execution codes are
set as non-writable to the rich OS through TZASC. (ii) The CA’s
executing context that is stored in the kernel space stack is hidden
in the U-K hooks and restored in the K-U hooks. Also, the CA’s
critical user space data memory (e.g., stack, data section, etc.) is
locked to rich OS kernel. (iii) A double map check is performed
on the protected memory (including a legal CA’s DsM region and
critical user space data) before they are unlocked.

Forth, we address the confused deputy attacks that deceive the
TAs to process data in fake addresses rather than DsM written
by the CAs. Due to the semantic gap between secure domain and

!Bypassing of the K-U hooks may only cause usability issue such as hindering the
proper unlocking of DsM, rather than sensitive data leakage .
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normal domain, it is difficult for TAs in secure domain to verify the
correctness of the memory addresses [40]. To resolve this problem,
TrustICT ensures each DsM region is only allocated for one CA
and maintains a one-to-one mapping between the CA and its corre-
sponding DsM region. Furthermore, it performs two security checks
on the address passed to a TA, namely, if the address corresponds
to a specific DsM region maintained in the one-to-one mapping
table and if the TA invocation is initiated by the corresponding CA.
We implement a system prototype of TrustICT on the i MX6Quad
platform, with an OP-TEE OS 2.2.0 [48] ? ported to the secure
domain and an Android OS 6.0.1 (Linux kernel 4.1.15) ported as the
rich OS in the normal domain. We also evaluate the performance
of TrustICT based on the prototype. The experimental results show
that TrustICT is efficient, and incurs about 2% overhead on rich OS.
In summary, we make the following contributions.

o We design a lightweight trusted interaction channel named
TrustICT between CAs and TAs when the rich OS cannot
be trusted. Instead of relying on heavy encryption/decryp-
tion operations and real-time kernel protection, TrustICT
achieves a lightweight secure communication channel by
enforcing the secure access of DsM via the TZASC that is
available on most mainstream ARM-based platforms.

e We present a systematic study on designing and securing
the cross-domain communication on multi-core platforms,
including potential attacks and their countermeasures.

e We implement a system prototype on i.MX6Quad platform,
running the OP-TEE OS system that is compliant with the
GlobalPlatform TEE specifications [27] and compatible with
many hardware platforms. Experiment results show that
TrustICT only incurs a small performance overhead on rich
OsS.

2 BACKGROUND

This section provides necessary backgrounds of TrustICT, including
architecture of the TEE system, the Domain-shared Memory (DsM)
mechanism, and the TZASC of ARM TrustZone.

2.1 Architecture of the TEE System

According to the specification published by GlobalPlatform [27], a
TEE system [28] generally contains two domains (i.e., secure do-
main and normal domain) isolated through hardware-based mech-
anism such as TrustZone [2], as shown in Figure 1. A traditional
untrusted OS (often called as rich OS) runs in the normal domain,
along with various feature-rich applications running on it. A trusted
TEE OS and several Trusted Applications (TAs) run in the secure
domain. Each TA usually has a corresponding client application
(CA) running in the normal domain, and the CA is responsible for
interacting with the TA. The hardware mechanism (e.g., TrustZone)
protects the secure domain against the software attacks from the
normal domain, even when the attackers obtain the kernel privilege
to access all resources in the normal domain(e.g., through exploiting
the privilege escalation vulnerabilities [1, 59]).

The applications in the normal domain invoke the TAs to accom-
plish dedicated security functions (e.g., digital rights management,

2OP-TEE OS 2.2.0 is an open source TEE system compatible with many hardware
platforms.
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Figure 1: The Architecture of TEE System

authentication, etc.). Since the execution of the TA is isolated in
secure domain, two components named TEE client and TEE driver
are introduced in rich OS to facilitate the invocation. TEE client
is a dynamic library, which hides the transaction details and pro-
vides user-friendly APIs for the CAs. TEE driver is the one that
directly interacts with the secure domain. When a CA initiates
a TA invocation through certain TEE client API, the TEE driver
executes a domain switch instruction (e.g., Secure Monitor Call
(SMC) instruction in TrustZone) to freeze the rich OS and switch
the processor into the secure monitor mode. The secure monitor
then accomplishes the context switching from the normal domain
to the secure domain. Next, the TEE OS and a corresponding TA
are activated to respond to the invocation. When the TA finishes
its execution, the secure monitor restores the system to the point
where rich OS suspends and returns the results to the CA.

2.2 TZASC of ARM TrustZone

ARM TrustZone is a hardware security extension since ARMv6
architecture, and it has been widely deployed on the smart mobile
devices [2]. It provides hardware-based security by partitioning the
resources of the ARM System-on-a-Chip (SoC) including proces-
sor, memory, and peripherals. TrustZone Address Space Controller
(TZASC) [7] is the mechanism used to achieve memory isolation,
and it can only be configured in the secure domain. Some regions
of memory could be protected against untrusted rich OS by setting
TZASC. TZASC set the memory as secure to prevent access from
normal world. TZASC contains a set of registers for each memory
region, and it supports to protect 7 memory regions simultaneously.
Each region represents a segment of physically contiguous memory,
whose size should be no less than 32KB. The starting and ending
address of the region, and the access permission on the region could
both be flexibly configured via TZASC registers in secure domain. If
several regions are overlapped, the access permission of the region
with the largest identifier number will take effect. For example, if
region 1 is set as only accessible to the secure domain and region
2 is set as accessible to both domains, then the overlapped mem-
ory will follow the access permission of region 2 (i.e., accessible to
both domains). TZASC also supports to set a region as read-only
or write-only to normal domain, rather than both readable and
writable.
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2.3 Domain-shared Memory

Domain-shared Memory (DsM) is a common cross-domain commu-
nication mechanism, whose implementation might vary slightly
on different TEE systems. We focus on the DsM mechanism of
the OP-TEE system, which is a typical TEE system maintained by
Linaro [37]. OP-TEE is compliant with the architecture illustrated
in Figure 1 and is compatible with many hardware platforms. The
cross-domain communication in OP-TEE system is accomplished
through DsM mechanism. In general, DsM is a physically contigu-
ous memory pool and primarily managed by the TEE driver. When
system boots up, the TEE driver initializes DsM based on the con-
figuration information obtained from TEE OS, such as the starting
physical address of DsM, size of DsM and if the memory should be
cached, etc. During the run time, the TEE driver allocates or frees
DsM according to the demands of the CAs. The DsM is managed in
chunks of 4KB, and each chunk is assigned an ID when allocated.
Chunk operations are encapsulated into a group of user-friendly
TEE client APIs to facilitate the development of CAs. The CAs read
and write a DsM chunk by specifying its corresponding ID. The
TEE driver then converts the IDs into physical memory addresses,
and informs the addresses to TEE OS. As such, the TAs could locate
and obtain data inputted by the corresponding CAs.

3 THREAT MODEL AND ASSUMPTIONS

TrustICT aims to construct a lightweight trusted interaction chan-
nel between CAs and TAs on the multi-core platforms, defending
against the potential man-in-the-middle attacks from untrusted rich
OS kernel. We assume the platforms are equipped with TrustZone
security extension [2], and the hardware implementations of Trust-
Zone are correct and could be trusted. Components running in the
secure domain (including TAs, TEE OS, and the secure monitor) are
benign and can be securely booted up via the secure boot technology
of TrustZone. We assume that a list of legal CAs permitted to access
the TAs is predefined and their identification information (e.g., hash
values of the execution codes) is safely maintained in the secure
domain. We assume legal CAs running in normal domain do not
either deliberately misuse the TAs by providing fake transaction
data or leak the cross-domain communication data (e.g., the data
inputted to TAs or returned by TAs) to the rich OS kernel.

In this paper, we focus on protecting the confidentiality and
integrity of the cross-domain communication data, and the avail-
ability issue is out of our consideration. Specifically, we enforce the
security of cross-domain communication against following four
attacks from the normal world. First, the attackers can get the lo-
cation of the cross-domain interaction channel and directly access
data in it. Second, they might illegally access the sensitive commu-
nication data through obtaining the execution information of legal
CAs (e.g., codes) and modifying the control flows. Third, they may
construct a malicious application to disguise as a legal CA. Fourth,
they could provide a fake communication address and deceive TAs
to process the malicious data in it.

4 DESIGN AND IMPLEMENTATION

We present the design and implementation of TrustICT on OP-TEE
system. We first give an overview of the system architecture along
with the main communication procedure between CAs and TAs.
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Figure 2: The Architecture of TrustICT

Then, we depict the dynamic configuration of the access permission
on DsM regions during system mode switching. It is the core tech-
nique to achieve a lightweight trusted interaction channel. Next,
we provide detailed solutions to resolve three problems, namely,
how to securely instrument mode switch hooks, how to securely
inform CAs about the locking states of DsM, and how to prevent
the attacks from the privileged rich OS.

4.1 System Architecture

The architecture of TrustICT is illustrated in Figure 2. The gray
boxes denote the modules newly introduced by TrustICT, and the
gray boxes with slash represent the modules extended from existing
functions of the OP-TEE system. Generally, we interpose the cross-
world communication, ensuring the associated DsM memory being
accessible only to legal CAs and TAs, and only data in the protected
DsM memory being processed by the TAs. In the following, we
introduce the main components of TrustICT along with a cross-
world communication operation, which includes six steps, as shown
in Figure 2.

(@ Allocating a DsM region for a CA. The cross-domain com-
munication is initiated by a CA process through invoking the DsM
Alloc APIs (provided by the TEE Client) to apply for one or more
DsM regions. The DsM Alloc APIs will then invoke the DsM Manager
(in the TEE Driver) to allocate the DsM regions. TrustICT modifies
the DsM allocation procedure to add a one to one mapping, which
called as DSM-CA mapping, between CAs and DsM regions. Specif-
ically, TrustICT introduces a DsM-CA Mapping Maintainer module
in the secure monitor to manage the DsM-CA mapping relationship.
It also modifies the DsM Manager to launch a mapping constructing
request after a DsM region is allocated, with the physical address of
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the DsM region as a parameter. After receiving the request, DsM-CA
Mapping Maintainer inserts a DsM-CA mapping item if that request
is initiated by a legal CA process.

(® Opening access permission of DsM region. TrustICT
locks all DsM region (by setting the access permission as inac-
cessible) when the system boots up. So the DsM region should
first be unlocked before being accessed by a CA process. TrustICT
introduces two modules to securely control the access permission
of DsM regions, including Mode Switch Hooks in the kernel of rich
OS and DsM Permission Controller in the secure monitor. The Mode
Switch Hooks interpose all user-to-kernel (U-K) and kernel-to-user
(K-U) mode switch operations in rich OS, and will inform the DsM
Permission Controller module to lock or unlock certain DsM region.
In step (2), after the DsM Manager finishes allocating the DsM re-
gion, it will return the control flow to the DsM Alloc APIs, which
will trigger a K-U mode switch. Then, in the K-U hook, the DsM
Permission Controller could be informed to unlock certain DsM
region if the CA process is legal and the DsM region belongs to that
CA process (i.e., matching one item in the DsM-CA mapping list).

(® Reading and writing DsM regions. When a DsM region
is unlocked, the corresponding CA process can read and write it.
However, the DsM accessing operations in the CA process might be
disrupted due to the locking state change of DsM region, the DsM
accessing operations will access incorrect data if the DsM is locked.
Since the CA processes are running in the user mode of normal
domain and are unknown of the DsM’s locking state change in the
secure domain. Therefore, TrustICT introduces a mechanism to
securely inform CAs of the DsM states, which is detailed in Section
4.4.

(» Closing access permission of DsM region. After the DsM
reading/writing operations are finished, the CA process will invoke
the TEE driver to inform the address which contains data written
by the CA to the corresponding TA. It will cause a U-K mode switch
in the rich OS. Then, in the U-K hook, the DsM Permission Controller
will be informed to lock all DsM regions by configuring them as
inaccessible again.

(® Notifying the address of DsM region to the TA being
invoked. When the TA is invoked, the TEE driver will pass to TA
the physical address of the DsM region written by the CA. In the
original cross-domain communication, the DsM Access Checker in
the TEE OS will check whether the addresses are among a spe-
cific physical memory range. This loose verification cannot defend
against the attacks launched through exploiting semantic gap vul-
nerabilities (e.g., BOOMERANG vulnerabilities [40]). For example,
the TEE driver can substitute real address of the DsM region with
a fake address that is also inside the legal memory range. TrustICT
enhances the DsM Access Checker with fine-grained check, i.e., ver-
ifying if the address provided by TEE driver is maintained in the
DsM-CA Mapping Maintainer and the TA invocation is initiated by
the corresponding CA. If it passes the checking, the TA processes
data in the DsM region and writes the results back to the DsM
region. After the TA finishes writing DsM region, the context is
switched back to the TEE driver. The TEE driver will perform a
K-U mode switch and transfer the control flow to CA. In the K-U
hook, the DsM region will be unlocked. Then, the CA can read the
data returned by TA.
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(o) Freeing DsM region. Finally, the DsM Free APIs in the TEE
Client will be called to free the DsM region, which will trigger a U-K
mode switch and cause the DsM region being locked. We modify
the DsM Manager to launch a mapping removing request after a
DsM region is freed, with the physical address of the DsM region
as a parameter. Then the mapping relationship will be removed
by the DsM-CA Mapping Maintainer if the CA process is legal and
the DsM region belongs to that CA process matches on item in
the DsM-CA mapping list. To prevent data leakage, TrustICT also
clears the data in the freed DsM region.

In step (D), the attackers may provide a fake DsM region (i.e., a
fake physical address) to the DsM-CA Mapping Maintainer, since the
TEE Driver is untrusted. However, the attackers could not misuse
the communication channel by pre-storing malicious data in the
fake DsM region, since legacy data in the DsM region will be cleaned
once it is allocated to a CA. Moreover, although the subsequent
cross-world communication is accomplished through the fake DsM
region, the attacker could not manipulate or steal the data stored
in it since TrustICT will securely lock the fake region.

4.2 Dynamically Configuring DsM

The DsM Permission Controller module is responsible to lock and
unlock specific DsM regions dynamically, based on the requests
from the mode switch hooks. The locking operations are achieved
by setting specific DsM regions as inaccessible to the normal domain
through TZASC, and the unlocking operations are achieved by
setting the DsM regions as accessible.

However, as mentioned in Sections 2.2 and 2.3, the DsM is al-
located at the granularity of 4KB, while the minimum size of a
TZASC region is 32KB. If we protect DsM regions directly through
TZASC permission setting on the allocation of at least 32KB for a
CA, it will waste a lot of memory. To solve this problem, TrustICT
leverages the sub-region mechanism of TZASC to achieve a fine-
grained control. Specifically, each TZASC region could be divided
into 8 equal sub-regions. Though all sub-regions share the same ac-
cess policy enforced on that region, TZASC sub-region mechanism
allow turning off access policy for each sub-region. Thus, we can
lock one sub-region by locking the region and disabling the access
policy on other 7 sub-regions.
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As shown in Figure 3, the DsM Permission Controller creates a
TZASC region (i.e., region 1) when the system boots up, which cov-
ers the entire DsM memory and is set as inaccessible to the normal
domain. When receiving DsM memory allocation requests, a new
TZASC region (i.e., region 2) whose physical memory is among
region 1 will be created, with the access permission set as acces-
sible and access policy disabled on all sub-regions. DsM regions
could then be unlocked (or locked) by enabling (or disabling) the
access policy on specific sub-regions, since the memory’s access
permission is determined by the region with largest identifier num-
ber (as described in Section 2.2). Figure 3 shows an example that
by enabling the access policy of two sub-regions in region 2, the
associated physical memory is unlocked, while other DsM memory
is still locked.

For each U-K mode switch, the U-K hook will lock the DsM
memory. And when K-U mode switch happens, the K-U hook only
unlock the DsM memory when such memory is accessed by the
legal CA and none of the cores are running in the kernel mode.

4.3 Securely Instrumenting Mode Switch
Hooks

Locking and unlocking DsM are triggered by the mode switch
hooks instrumented in the rich OS. We must assure that these
hooks cannot be bypassed or tampered by rich OS. However existing
hook protecting solutions are usually achieved through heavy page-
table-operation monitoring, not well suited for TrustICT. So, we
introduces a more lightweight solution. We first describe the normal
mode switch procedure in rich OS, and then depict how TrustICT
instruments the mode switch procedure by inserting hooks. Next,
we present the details on protecting the mode switch hooks.

4.3.1  Normal Mode Switch Procedure in Rich OS. On ARM plat-
forms, the mode switch operations are triggered via exceptions, in-
cluding the undefined instructions, supervisor calls, prefetch abort,
data abort, and IRQ/FIQ interrupts. When encountering an excep-
tion, system will switch to kernel mode and jump to corresponding
handler function through hardware mechanism. Each exception
handler function can be addressed through the exception vector
table. The execution is switched back to user mode when the han-
dler function returns. Specifically, the mode switch procedure is as
follows.

First, it locates virtual address of the exception vector table by
reading the System Control Register (SCTLR). If V-bit of SCTLR is
set, the virtual address is fixed to 0xfIff0000; otherwise, the address
will be recorded in Vector Base Address Register (VBAR). In Android
OS, the virtual address of the exception vector table is usually fixed
to 0xftff0000. Then, it obtains the physical memory of the exception
vector table by leveraging the Memory Management Unit (MMU) to
perform memory translation. Next, it obtains the virtual address of
the handler function by retrieving the exception vector table, and
finally locates the handler function’s physical address via MMU.

In above procedure, the MMU relies on the virtual-to-physical
mappings in specific page tables to perform the memory translation.
The base address of page tables is stored in the Translation Table
Base Registers (TTBRs) on most ARM platform. Generally, there are
two TTBRs, i.e., TTBRO and TTBR1. The N-bit of Translation Table
Base Control Register (TTBCR) determines which register actually
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takes effect. In Android OS, the N-bit of TTBCR is usually set as 0,
so only TTBRO is used.

Moreover, although the execution codes of the handler func-
tions are distributed among several memory pages, the entry points
of all handler functions are normally concentrated in one mem-
ory page (hereinafter referred to as Exception-Entry-Page). The
exception vector table is also allocated in one memory page (here-
inafter referred to as Exception-Vector-Page). Further more, vir-
tual and physical addresses of the Exception-Entry-Page and
Exception-Vector-Page are set when the system boots up and
will remain unchanged during the run time.

4.3.2 Instrumenting the Mode Switch Hooks. TrustICT interposes
the mode switching operations by instrumenting the exception han-
dler functions. Both U-K hooks and K-U hooks are implemented as
the SMC instruction which switches to the secure domain. Specifi-
cally, TrustICT adds U-K hooks at the entry points of each exception
handler function. The U-K hooks are naturally allocated in the same
page accommodating the handler functions’ entry points (i.e., the
Exception-Entry-Page). The K-U hooks should be inserted at the
end of each exception handler function. Unfortunately, the excep-
tion handler functions distribute in several different memory pages.
To facilitate the control of K-U hooks, we instrument only one K-U
hook and add a jump instruction to K-U hook at the end of each
handler function. Both U-K hooks and K-U hook need to switch
the execution to DsM Permission Controller in the secure domain,
so that the access permission of the DsM regions could be securely
revoked and granted, respectively. We allocate the code of the K-U
hook in the same page as U-K hooks.

In a U-K hook, the execution will be switched back to the original
exception handler function in the normal domain when the DsM
Permission Controller finishes its execution in the secure domain.
As for the K-U hook, since certain DsM regions might be unlocked,
the DsM Permission Controller in the secure world will directly
transfer the control flow to the user space of the CA, to prevent
the unlocked DsM regions from being accessed by the malicious
kernel. To achieve the exact transferring, TrustICT will record the
address of the CA’s user-space instruction interrupted by the U-K
hook and resumes that instruction in the K-U hook.

4.3.3  Protecting Mode Switch Hooks from Being Tampered. Attack-
ers with rich OS kernel privilege can directly modify the hooking
codes, therefore we should provide real-time integrity protection
on them. In rich OS (i.e., Android OS), the entry points of the ex-
ception handler functions will not change once loaded. Since the
hooking codes are located in the same page as the entry points (i.e.,
the Exception-Entry-Page), we can prevent the codes from being
tampered by setting the Exception-Entry-Page as readable and
executable (but non-writable) to normal domain via TZASC.

4.3.4 Protecting Mode Switch Hooks from Being Bypassed. Since
U-K hooks are responsible for invoking the DsM Permission Con-
troller to close the access permission of all DsM regions, if they are
deliberately bypassed, the access permission on DsM regions will
not be closed securely. However, K-U hooks are the interface to un-
lock a DsM region, bypassing of them will make the to-be-unlocked
regions remain locked, which will not damage the confidentiality
or integrity of the communication data. Therefore, to protect DsM
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regions, we have to ensure that the U-K hooks cannot be bypassed
when one or more DsM regions’ access permission are unlocked.

U-K hooks may be bypassed in three ways through disrupting the
procedure of the handler function locating. First, the attackers may
directly modify the Exception-Vector-Page to manipulate the vir-
tual addresses of exception-handler-function entry points. Second,
the attackers may modify the values of exception-associated regis-
ters (i.e., SCTLR and VBAR), which are used to determine the virtual
address of the Exception-Vector-Page. The attackers can pro-
vide a fake virtual address by modifying the exception-associated
registers. Third, attackers may modify the page table entries uti-
lized by MMU to perform virtual-to-physical memory translation
for the Exception-Entry-Page and the Exception-Vector-Page
(hereinafter referred to as exception-associated-mappings).
Specifically, the attackers may directly tamper with exception-
associated-mappings from kernel space, or change the permissions
of exception-associated-mappings so that they could be tampered
from user space. As such, fake physical addresses of exception
vector table and handler-function entry points will be fetched.

For security, we need to protect exception-associated regis-
ters (i.e., SCTLR and VBAR), exception-associated-mappings and
Exception-Vector-Page to prevent U-K hooks from being by-
passed. TrustICT provides the run-time integrity protection for
these critical values. The Exception-Vector-Page is protected
by being configured as non-writable to the normal domain once
the system boots up. The exception-associated registers and map-
pings are guarded as follows. Generally, values of the the exception-
associated registers and mappings will remain unchanged once
the rich OS boots up. TrustICT records the original values of the
exception-associated registers and mappings. In K-U hook, before
unlocking certain DsM regions, TrustICT will ensure values of the
exception-associated registers and mappings are the same as the
original ones and set the page tables accommodating the exception-
associated-mappings as read-only to user space. After the K-U hook,
the control flow will be switched to user space, where the exception-
associated-mappings are read-only and the exception-associated
registers could neither be modified since the corresponding in-
structions are only executable in kernel mode. As such, when the
execution is switched from user space to kernel space, the U-K
hooks will definitely be invoked since the value integrity of the
exception-associated registers and mappings are ensured.

With the above protection mechanisms, the DsM regions will be
securely locked to the kernel space, although the malicious kernel
might manipulate the values of exception-associated registers and
mappings. Specifically, all DsM regions are by default configured as
inaccessible to normal world when the system boots up. The only
way to unlock certain DsM region is through invoking the K-U hook,
however we bind the DsM memory unlocking operations together
with the value integrity protection of exception-associated registers
and mappings in the K-U hook. As such, once certain DsM region
is unlocked in the K-U hook, values of the exception-associated
registers and mappings will be resumed to the correct ones. Then,
the hardware components (i.e., CPU and MMU) will ensure the U-K
hooks being invoked to lock all DsM regions when performing the
user to kernel mode switch (i.e.,before the control flow is switched
to kernel mode).
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Figure 4: Polling Mechanism for Informing DsM States

4.4 Securely Informing CAs of DsM States

TrustICT needs to unlock the DsM regions only when none of the
cores are running in the kernel mode of normal domain. However,
it may cause problems to the CAs. Specifically, when CA_1 is ac-
cessing DsM regions on core_2, if core_1 is switching from user
mode to kernel mode, all DsM regions will be locked. In this time,
CA_1 has no idea of this and continues its read/write operations.
The data read/written may be incorrect, since reading a locked DsM
region only reads zero no matter what real values are, and writing
to a locked DsM region causes no changes. To resolve this problem,
TrustICT introduces two mechanisms that are both transparent to
CA/TA developers.

Polling Mechanism. First, we introduce a polling mechanism
by modifying the DsM Read/Write APIs in the TEE Clients. The basic
idea is that the APIs will repeat the reading and writing operations
until the data is correctly read or written. As illustrated in Figure
4, we add a read-back operation for each writing operation, and
continue the writing operation until the read-back operation obtains
the same value as the written one (it means the DsM memory is
correctly written). For reading operations, obtaining a none-zero
data means the DsM region is unlocked (i.e., the reading operation
is successful). However, obtaining a zero data does not necessarily
mean the DsM region is locked (i.e., the reading operation is failed),
since the original data output by the TAs may be zero. To distinguish
them, we modify the TEE OS to add location information on the
data returned by the TAs (rather than transparently forwarding the
data as in the original cross-domain communication procedure),
which identifies the locations of bytes whose value is zero. Thus,
the DsM Read APIs repeat the reading operation until the data read
out is not zero, or the identified zero-bytes are read out.
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One problem of Polling Mechanism is that TZASC may only
be used to protect the DsM memory but not CPU cache. When
verifying if the data written in is correct, the writing and read-
ing back operations by default will process the data on the cache
rather than memory. Therefore, the read-back operation may get
correct data even if the DsM memory is inaccessible. There are two
options to resolve this problem, i.e., setting the DsM memory as
non-cacheable, or enforcing memory flush for each DsM writing
operation. Our preliminary evaluation shows that the overhead
caused by flushing is about eight times that of the cache-disabling
solution. Therefore, TrustICT chooses to disable the cache for the
DsM memory.

Dealing with the Kernel-stuck Cores. The polling mecha-
nism ensures the correctness of the CA’s reading and writing op-
erations, and works well in most cases. However, the execution of
related CAs may be stuck if certain cores run in the kernel mode
for a long time, e.g., when the cores retain in the kernel-mode idle
state for power saving or execute time-consuming system calls (e.g.,
fork). To resolve this problem, TrustICT transiently pauses the
cores long-running in the kernel mode (hereinafter referred to as
kernel-stuck cores) when one or more CAs are accessing the
DsM memory, the details are as follows.

In U-K hooks, TrustICT will record the core state and the time
that core enters kernel mode. When any core encounters a K-U
hook, TrustICT updates core state and checks the duration of each
core that resides in the kernel mode. If the duration is higher than
a threshold, the associated core will be paused. The DsM accessing
operations might still be stuck if no K-U hooks happen because a
core may enter and retain in kernel mode. We solve it by adding
a time monitor in the DsM Read/Write APIs and a “no-operation”
system call in rich OS (i.e., the system call directly switches the
context to user mode). If one DsM reading/writing operation is
stuck for a certain time length, it will invoke the “no-operation”
system call to trigger a K-U hook. The paused cores will be restarted
when the DsM operations finish.

4.5 Defeating Attacks on Legal CAs

Attacks from malicious rich OS might also damage the cross-domain
communication in three ways, even if the U-K/K-U hooks are en-
hanced and the DsM memory is securely locked to kernel. First, it
could misuse the DsM memory allocated for the legal CA by either
disguising as a legal CA or manipulating the execution of a legal
CA. Second, it could double map a legal CA’s DsM region to other
user application. As such, the user application could illegally access
the DsM region when it is unlocked. Third, it can manipulate the
TEE driver to provide a fake address (i.e., not the physical address
of the DsM memory written by CA) to TA. Due to the semantic gap
between normal domain and secure domain, it is difficult for a TA
to judge if it is a fake address. We develop countermeasures against
all above attacks.

4.5.1 Defending against CA Manipulating or Disguising Attacks.
TrustICT achieves this goal using three mechanisms. First, it per-
forms code and data integrity check when a CA process (including
both the user program and the shared libraries in it) is started, and
sets legal CA’s execution codes as non-writable to rich OS through
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TZASC. As such, the attackers could not access DsM through dis-
guising as a legal CA or tampering with its execution codes. Second,
it locks the legal CA’s critical data memory (including the .data
section and the user-space stack) in the U-K hook and unlocks it in
the K-U hook, to avoid data breaches and tampering. For the heap
memory, we provide two functions for the CA program to malloc
(and free) heap memory from (and to) the protected DsM memory.
This could prevent malicious kernel from manipulating the legal
CA’s user-space data. Third, to prevent the malicious kernel from
manipulating the CA’s execution flow by disturbing the execution
context stored in the kernel stack (e.g., the values of Link Register
(LR), Stack Pointer (SP) and return address etc.), TrustICT records
and hides the CA’s context in the U-K hooks, and restores the values
in the K-U hooks. The performance of CA may be affected due to
locking of'its critical data memory. Fortunately, in most case, the CA
is only invoked when needing to interact with the TA. Therefore,
it will not cause much overhead to rich OS.

Specifically, we locate the CA process’ code and data in memory
through two steps. First, we get the virtual address and memory
range of the segments including code and data sections through
parsing the ELF-formatted CA program file. Then, we get the cor-
responding physical addresses with the help of the page tables
located through TTBRO value. On ARM platforms, the TTBRO reg-
ister stores the base address of a running process’ page table set.
As for the user space stack, we first derive the CA process’ user
space memory layout through the page tables, and then locate the
stack section which is continuous and resides at the end of the
memory layout. When a CA process is started, TrustICT will check
whether the Program Counter Pointer and Stack Pointer are located
in the code and stack sections respectively, before transferring
control flow to the CA in the K-U hook. Meanwhile, it sets the
memory accommodating the page table mappings of these sections
as non-writable to normal world.

The TTBRO value assigned for each running process is unique
and will not be changed until the process runs to completion. More-
over, TrustICT introduces run-time protection for the data associ-
ated with a TTBRO value (i.e., a running process’ data, code and
page table set). Therefore, we can use TTBRO value to represent
a CA process. To quickly judge whether the running process is a
legal CA, TrustICT maintains the legal CA processes’ TTBRO values
in the secure world, and identity a legal CA through comparing
the TTBRO value when performing the checks in the mode switch
hooks.

4.5.2 Defending against Double Map Attacks. Before unlocking a
CA’s protected memory (including DsM memory and critical user
space data memory like stack, .data section), TrustICT will check if
the memory is double mapped by any processes running on other
cores than the core this CA is being executed. Specifically, it first
locates the processes’ page tables by reading the corresponding
core’s TTBRO. Then, it goes through the page table entries to check
if the protected memory is double mapped. It is not necessary
to check each page table entry, which might be time-consuming.
In rich OS, the page tables are organized in two levels. Level-1
page tables are used to locate the level-2 page tables, while level-2
page tables are used for locating the real memory accessed by a
process. And a permission-bit in the level-1 page tables indicates
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Figure 5: BOOMERANG-based Attack

if the associated memory belongs to kernel space or user space.
The processors will prevent the kernel-space memory from being
accessed from user space.

Since the protected memory is only unlocked when all cores
are running in the user mode, we only need to prevent the double
mapping of user-space memory. Instead of traversing all page table
entries, TrustICT first checks level-1 page tables, and ensures the
permission-bit of all designated kernel-space memory are correctly
set. Then, it checks the entries of level-2 user-space page tables
to ensure the protected memory is not double mapped to user
space. To prevent the rich OS from hiding the double maps in the
Translation Lookaside Buffer (TLB) cache (rather than memory),
TrustICT will flush the associated TLB entries. According to our
evaluation, it needs about 200 ps to check one process. And the
double map checking will be triggered in the K-U hooks only when
certain protected memory region needs to be unlocked.

4.5.3 Defending against Semantic Gap Vulnerability. As mentioned
in Section 4.1, the physical address of DsM memory written by CA
will be informed to TA via the TEE driver. Due to the semantic gap
between normal domain and secure domain, it is difficult for a TA
to judge if it is a fake address. This is also the primary cause of the
BOOMERANG attacks [40]. As illustrated in Figure 5, DsM_A and
DsM_B are allocated for CA_1 as the input memory and output
memory, and CA_1 writes data in to DsM_A and reads return
values from DsM_B. However, attackers can control TEE Driver to
inform Memory_C and Memory_D to TA_1, then TA_1 will read
and write through these memory. TrustICT resolves this problem by
introducing an additional check in the TEE OS. Specifically, before
the DsM memory is accessed by a TA, the DsM Access Checker
module will check if the addresses informed by TEE driver match
certain ones recorded in the DsM-CA Mapping Maintainer, and if
the TA invocation is initiated by the corresponding CA. The paper
introducing BOOMERANG also provides the defensive method,
Cooperative Semantic Reconstruction [40]. Such method relies on the
trusted kernel while our design defends against untrusted kernel.
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5 EVALUATION

We evaluate TrustICT by conducting extensive experiments on the
prototype implemented on the FreeScale i MX6Quad development
board. The board is equipped with a quad-core ARM Cortex-A9
processor running at 1.2GHz with 1GB DDR3 SDRAM. The secure
world is deployed with the OP-TEE OS 2.2.0, and the normal world
is installed with a FreeScale Android 6.0.1 system with a 4.1.15 Linux
kernel. In total, TrustICT adds about 210 source line of code (SLOC)
in the normal domain, and about 2690 SLOC is added in the secure
domain. To minimize the noise involved during our experiment,
we run each test with 1,000 iterations and take the average as our
measures.

To better illustrate the performance of TrustICT, we provide a
comparison between TrustICT and SeCReT [33] in the evaluation.
SeCReT [33] also focuses on constructing a trusted cross-world
communication channel, and it mainly contains two modules, i.e.,
the kernel protection module which ensures real-time integrity of
rich OS kernel codes through interposing page table operations
and the data protection module which protects the communication
data through encryption/decryption operations. Since the source
codes of SeCReT are unavailable, we implement a prototype of
SeCReT (including both the kernel protection module and the data
protection module) according to their paper (hereinafter referred
to as the SeCReT-like system).

5.1 Impacts on Rich OS

The primary performance impacts introduced by TrustICT on rich
OS are due to hooking the mode switch operations, which intro-
duces extra cross-domain switching operations and additional pro-
cessing tasks in the secure world such as recording the core states
(see Section 4.4) and restoring exception-associated-mappings and
registers (see Section 4.3.4). Also, the kernel-stuck cores might be
transiently paused when one or more CAs are accessing the DsM
memory (see Section 4.4). SeCReT’s main impacts on rich OS are
caused by the kernel protection module which adopts the real-time
kernel protection technology TZ-RKP [10] to protect the kernel
hooking codes. Besides the overall overhead, overhead on the appli-
cation loading time and the overhead of the system call invocations
evaluated in the SeCReT and TZ-RKP papers, we additionally test
the probability for the cores to be transiently paused to learn the
influence of multi-core in our design.

5.1.1 Overall Overhead. We first study the overall performance
impacts on the rich OS through a comprehensive benchmark suite
AnTuTu 2.9.4 [5]. The scores for the original system, TrustICT and
the SeCReT-like system are 3358, 3289 and 3247 respectively. The
higher score means the better performance. The SeCReT-like sys-
tem introduces about 3% overhead, which is in consonance with
the results in the TZ-RKP paper [10]. TrustICT reduces the per-
formance loss by about one percent. This is mainly because we
avoid the frequent page table operation checking and achieve real-
time protection of hooking codes through dynamically setting the
TZASC registers (Section 4.3). Moreover, TrustICT could be further
optimized by disabling the real-time protection when no legal CAs
are running, then it will not introduce overhead on the rich OS. But
the protection in SeCReT should be always activated during the
execution of rich OS.
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Table 1: Overhead of System Call Invocations on Rich OS (in us)

TrustICT SeCReT-like TrustICT SeCReT-like
System Call | Original (With CA Overhead (With CA Overhead (With CA Overhead (With CA Overhead
Not Access DsM) Not Access DsM) Access DsM) Access DsM)
Open 47.2 109.4 2.3178x 1113 2.3581x 323.1 6.8453x 1118 2.3686x
Close 233 90.6 3.8884x 883 3.7897x 305.2 13.0987x 88.9 3.8155x
Read 29.5 924 3.1322x 94.8 3.2136x 303.2 10.2780x 96.3 3.2644x
Write 174.1 2445 1.4044x 242.2 1.3912x 436.4 2.5066X 244.6 1.4049x
Malloc 30.2 86.3 2.8576x 89.5 2.9636x 302.3 10.0099x 90.1 2.9834x
Free 0.8 179.8 2.2252x 183.7 2.2735x 413.6 5.1188x 185.7 2.2983x
Fork 3890.9 4828.6 1.2410x 4783.6 1.2294x 147093 3.7804x 4793.9 1.2321x
Send 377.2 611.8 1.6220x 643.1 1.7049x 828.2 2.1957x 654.7 1.7357x
Recv 46.6 110.2 2.3648x 106.3 2.2811x 311.8 6.6910x 111.2 2.3863x
Connect 1489.4 1916.1 1.2865x 1893.8 1.2715x 6989.5 4.6928x 19127 1.2842x
Table 2: Overhead of App Loading Time (in Seconds) 60.00% 53.52%
50.00%
[ Test Item [ Original [ TrustICT [ Overhead [ SeCReT-like [ Overhead ]
j*]
Calculator 3.01 3.09 2.66% 3.24 7.64% & 40.00%
Calendar 314 321 2.23% 336 7.01% g 28.17%
g 17%
Music 1.26 131 3.97% 1.38 9.52% S 30.00%
Settings 3.77 3.86 2.39% 3.97 531%
20.00% 16.90%
10.00%
5.1.2  Overhead of System Call Invocations. TrustICT’s primary 1.41%
. . e . . 0.00% —
impact on rich OS lies in the system call invocations, and the over- ° Zero One Two Three

head might vary when the system is running in different execution
contexts. For example, certain system call invocation might be tran-
siently suspended when a CA is accessing DsM memory. To better
illustrate the overhead introduced by TrustICT, we evaluate the per-
formance of system call invocations in three different scenarios, i.e.,
when (1) the original system is running, (2) TrustICT or SeCRet-like
system is enabled with a CA running, but the CA is not accessing
DsM, (3) TrustICT or SeCRet-like system is enabled with a CA con-
tinuously accessing DsM. In total, we test ten frequently used sys-
tem calls including open, close, read, write, malloc, free, fork,
send, recv and connect. For read, write, malloc, free, send and
recv system calls, we call them to process 4KB data or memory,
respectively.

The experimental results are illustrated in Table 1. When TrustICT
is enabled with a CA running but the CA is not accessing DsM (i.e.,
scenario (2)), most of the system call invocations are slowed down
by tens of microseconds, due to two extra cross-domain context
switch operations triggered by hooks. The extra operations con-
ducted to protect the CA’s control flow in each hook when a CA
program is running (as illustrated in Section 4.5.1). Some complex
system calls may trigger extra exception handler functions to be
executed, thus introducing higher overhead. For example, the fork
system call will trigger several additional page fault exceptions. The
SeCReT-like system has similar results in scenario (2), since it also
has two extra cross-domain context switch operations triggered by
hooks.

When a CA is accessing DsM (i.e., scenario (3)), about 200us
overhead is additionally introduced to most of the system call invo-
cations in TrustICT, which is caused by the double map checking
enforced in the K-U hooks before unlocking the DsM (as depicted
in Section 4.5.2). Since most kernel operations (e.g., system calls)
could be finished in less than 1 millisecond, we set the threshold for
identifying kernel-stuck cores as 1 millisecond (referred to Section

Number of Kernel-Mode Cores

Figure 6: State of the Cores When Running System-Call-
Intensive Workloads

4.4). Therefore, the higher overhead in fork and connect is caused
by the transient pausing of the core. The results of the SeCReT-like
system have no big difference for the scenarios (2) and (3), since
SeCReT mainly focuses on defending against the attacks on the
single-core platforms and introduces no protection for the multi-
core platforms.)

5.1.3  Overhead of Application Loading Time. Asillustrated in Table
2, we test the loading time of four Android applications, including
Calculator, Calendar, Music and Setting. The overheads introduced
by the SeCReT-like system and TrustICT are about 7% and 3% re-
spectively. Also, the overhead of TrustICT could be avoided when
no legal CAs are running by disabling the protection.

5.1.4  Probability for Cores to be Transiently Paused. In TrustICT,
certain cores might be transiently paused when a CA is running,
and it mainly depends on the possibility for the cores to be executed
in the kernel mode and the time duration of the kernel operations.
The cores will only be paused during a CA is accessing the DsM,
and more kernel operations will be involved when the system is
executing system-call-intensive jobs. Therefore, we investigate the
state of the cores when the system is running a CA program and four
additional system-call-intensive tasks (i.e., an audio player, an image
viewer, a user program continually sending and receiving packages
and an AES encryption program). The CA program continuously
initiates the DsM accessing operations through TA invocations. The
results are illustrated in Figure 6. It shows that in more than half
of the time, only one core is executing in the kernel mode, and the
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chance for all three cores (except the core running the CA program)
to be executed in kernel mode is only 1.14%. Since 90% kernel
operations could be finished in 1 millisecond, it is about 0.114%
percentage for all the other three cores to be paused. Actually, this
will hardly happen, since the cores will only be transiently paused
when the CA is accessing DsM memory. Since SeCReT doesn’t
provide protection for the multi-core scenario, we don’t perform
this test for it.

5.2 Impacts on Cross-domain Transaction

The cross-domain communication is launched through TA invoca-
tions, which are initiated during the execution of the CAs. Therefore,
we first evaluate the slow down on the execution of a CA. We test
seven CA-TA pairs shipped with the OP-TEE source codes, i.e., AES
Encrypt, AES Decrypt, SHA-256, AES-256 ECB Encrypt, AES-256
ECB Decrypt, Secure File Storage and Key Derivation. A normal TA
invocation involves many operations, such as allocating and freeing
DsM memory, performing cross-domain context switch, loading TA
images, and reading and writing DsM memory, etc, which usually
takes hundreds of milliseconds. When the TrustICT is enabled, the
CA will perform code integrity check before performing data inter-
action. And when the CA is running, it may be suspended when
other cores switch to kernel mode. As shown in Table 3, TrustICT
imposes about 60% overhead on the CA execution while the value
for SeCReT-like system is about 35%. The primary reason for the
extra overhead in TrustICT is because it needs to defeat the at-
tacks launched from other cores on the multi-core platforms, while
SeCReT only ensures the security on single-core platforms. To sim-
ulate the single-core scenario, we close the protection mechanisms
used to defeat attacks from other cores (i.e., the double map check-
ing and polling mechanisms), thereafter the overhead of TrustICT
reduces to 18%. The efficiency of TrustICT can be further improved
by lowering the threshold used to identify the kernel-stuck cores
as described in Section 4.4, but this might in contrary increase the
overhead on rich OS. In our scheme, Poly1305 [53] algorithm is
utilized to perform the code integrity check for better performance.

Table 3: Overhead of CA Execution (in us)

[ CATAPair [ Original | TrustiCT | Overhead | SeCReT-like | Overhead |

AES Encrypt | 1768733 | 2988765 | 63.98% 2467863 39.53%
AES Decrypt | 187322.6 | 3167543 | 69.10% 2582653 37.87%
SHA-256 | 185786.2 | 2763781 | 48.76% 251724.1 35.49%
AES-256
ECB Encrypt | 1883395 | 3097298 | 64.45% 258275.2 37.13%
AES-256
ECB Decrypt | 1879042 | 2876233 | 53077 257169.8 36.86%
SecureFile 1,0 505 | 2832672 | 59.65% 236871.6 33.50%
Storage
Key
ey 1652237 | 2698769 | 63.34% 228652.8 38.39%
Derivation

Furthermore, we study the performance overhead on the direct
DsM reading and writing operations in the CAs 3. Specifically, we
calculate the time used to write and read a piece of DsM memory,
with the memory size increasing from 128 bytes to 4096 bytes, on

3In the SecReT paper, the performance overhead on cross-domain transaction is only
evaluated through the direct DsM reading and writing operations in the CAs.
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three different conditions, i.e., when the memory is not protected,
when it is protected by TrustICT and SeCReT-like systems. To
simulate the worse cases, the overhead introduced by TrustICT is
evaluated when the rich OS is running system-call-intensive tasks
(i.e., an audio player, an image viewer, a user program continually
sending and receiving packages and an AES encryption program).
The results are illustrated in Table 4. When protected by TrustICT,
the running time increases in tens to thousands of microseconds
as the payload increases. The overhead is mainly caused by dis-
abling the CPU cache and the polling mechanism, as described in
Section 4.4. When the rich OS is not running system-call-intensive
workloads, the overhead could be further reduced (e.g., when the
four system-call-intensive tasks are paused, the overhead reduces
about 50% to 75%). As a comparison, SeCReT-like system increases
in several to tens of milliseconds due to the expensive encryption
operations 4. As such, the overhead of TrustICT is much smaller
than that of cryptographic-based solutions.

Table 4: Overhead of DsM Read-Write Operations on CAs (in
us)

Payload [  Original | TrustICT [ SeCReTdike |
(Bytes) | Write [ Read [ Write | Read | Write | Read |
128 14.3 14.2 212.7 79.3 790.6 2486.3
256 16.2 16.4 360.3 157.3 1309.0 4002.9
512 22.5 20.8 725.8 291.4 2365.3 6733.7

1024 31.2 27.3 1454.2 638.5 3894.7 12937.5
2048 48.1 42.4 | 3008.6 | 1154.6 7498.5 25067.2
4096 85.3 79.7 | 4499.1 | 2393.1 | 15338.9 | 45389.9

TrustICT mainly achieves the protection through hooking and
performing security checks during the user and kernel mode switch-
ing in rich OS, which will hardly introduce extra overhead on the
operations in the secure domain. Therefore, we do not evaluate its
impacts on the secure domain. In summary, our design surpasses
the solutions which rely on the real-time kernel protection mech-
anism and the encryption/decryption operations (e.g., SecReT) in
multiple items, such as overall performance, application loading
times, CA execution and DsM read-write operations etc.

6 DISCUSSION AND FUTURE WORK

Before the data is inputted into the DsM and processed by TAs, it
may be produced and pre-processed in the CAs (hereinafter referred
to as Pre_DsM_Data). Malicious OS may disrupt the Pre_DsM_Data
through manipulating the execution of legal CAs. In TrustICT, we
defend against this by locking the legal CAs’ critical user-space
memory (including code, stack, data section etc.) to the kernel and
hiding the CAs’ execution context in the U-K hooks. This solu-
tion works well when the processing of Pre_DsM_Data could be
accomplished entirely inside the CAs without the help of kernel.
In the situation when the pre-processing needs to invoke kernel
functions (e.g., the signal-handling function), we should allow the
kernel to write portions of the CAs’ user space memory (e.g., the
stack). There are two approaches to protect the function invocation

“The same experiments show more performance loss in the SeCReT paper (e.g., it takes
almost a second to operate 4096 bytes), which might be because the different experi-
ment platforms. Also, some extra protection measures in SecReT are not implemented
in our SeCReT-like prototype.
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between legal CAs and malicious OS. The first one is monitoring
each invocation and allowing only secure ones (e.g., the invoca-
tions without leaking CAs’ sensitive data) to be performed. Similar
ideas are leveraged in the solutions such as Trustshadow [31] and
Overshadow [17]. The second one is introducing a well isolated
micro-kernel as an aid to the legal CAs, just as the implementation
of SANCTUARY [15]. In this paper, we focus more on protecting
the cross-domain communication channel. We leave it as our future
work to design a more complete CA protecting scheme.

7 RELATED WORK

A line of research work focuses on providing real time integrity
protection on the critical codes. HyperSentry [11] utilizes SMM (Sys-
tem Management Mode) to securely run the monitoring code to
check the integrity of the hypervisor. NICKLE [50] achieves the real-
time integrity protection of kernel codes by controlling the shadow
physical memory through hypervisor. TZ-RKP [10], SPROBES [26],
and SKEE [13] are solutions towards the ARM platforms, which
provide real-time integrity protection by interposing and monitor-
ing each page table operations. Instead of relying on the expensive
page table monitoring operations, we leverage a common hardware
component TZASC available on most ARM platforms to achieve a
lightweight code integrity protection.

A number of research works devote to protect sensitive data
through cryptographic technologies. Guan et al. propose two so-
lutions [29, 30], which provide sensitive data protection against
physical memory disclosure attacks by locking the plaintext in the
cache and illustrating only ciphertext in the memory. CaSE [62]
is another cache-based solution that further defends against the
software attacks by leveraging the isolation provided by ARM Trust-
Zone extension. Overshadow [17] and InkTag [32] encrypt address
space of a sensitive application through a hypervisor, so that a
compromised OS can only view the address space of the applica-
tion in ciphertext. Cryptographic technologies are also adopted by
popular mobile OSes (e.g., Android and iOS) to protect the data on
the file system [3, 6]. Cryptographic-based solutions introduce non-
negligible overhead, especially on the power-constrained mobile
platforms.

Besides using cryptographic technologies, system level technolo-
gies are utilized for protecting the sensitive data. Virtual Ghost [21]
prevents the attackers from accessing the protected memory area of
applications by using compiler-based instrumentation. It requires
the operation system to be recompiled. Several solutions [41, 42, 60]
take advantage of the high-privileged hypervisor to enable se-
cure execution and data secrecy for pieces of application logic.
Hypervisor-based solution may not provide the best performance
for the resource-constrained mobile platforms. In addition, the hy-
pervisor is already struggling with its own security problems due
to increasing TCB size [23, 24]. In this work, TrustICT utilizes the
TrustZone technology to shield applications from untrusted OS
kernel, eliminating complex, error-prone resource allocation in a
hypervisor.

Hardware-assisted protection is also widely explored to shield
the applications from untrusted OSes. Intel Software Guard eXten-
sion (SGX) [43] has been adopted by many solutions to secure
the application execution on the Intel platforms [14, 19, 20, 56].

JWang, YWang, L.Lei, K.Sun, J.Jing and Q.Zhou

SICE [12] protects sensitive workloads running on x86 platforms
through SMM. For the mobile devices running on ARM processors,
TrustZone technology is widely utilized for shielding applications
(e.g., [31,52, 57, 58]). TrustShadow [31] guarantees secure execution
of unmodified applications. TrustOTP [57] is a solution realizing
trusted display of one-time passwords. TrustICE [58] creates isolated
computing environments in the normal domain. Trusted Language
Runtime (TLR) [52] protects the confidentiality and integrity of
NET mobile applications. These systems were implemented with-
out considering a secure cross-domain communication channel.
SANCTUARY [15] implements a secure channel but it relies on
ARM Fast Models virtualization tools which is not supported by
hardware. Ginseng [61] utilizes registers to protect secrets which
depends on page table monitoring operations and the size of the pro-
tected data is limited. SeCReT [33] is the most close work to our so-
lution on securing the data interaction between normal and secure
domain. SeCReT leverages the time-consuming cryptographic op-
erations and protects the rich OS kernel’s static region via hooking
and monitoring each page table operation, where both approaches
may introduce heavy system overhead. Moreover, SeCReT only
works well on single-core platforms. TrustICT is a lightweight
solution on the multi-core platforms, and it achieves a trusted cross-
domain communication channel by protecting the access to the
DsM via TZASC, rather than relying on the expensive real-time
kernel protection solutions (e.g., TZ-RKP [10]) and heavy encryp-
tion/decryption operations.

8 CONCLUSIONS

In this paper, we develop a system named TrustICT to secure
the data communication between CAs and TAs on the multi-core
platforms. Different from existing approaches that rely on heavy
cryptography operations, TrustICT protects the cross-domain com-
munication by dynamically setting the access permission of the
domain-shared memory (DsM), ensuring that the DsM memory
could only be accessed from user space of the normal domain or the
secure domain, but not the untrusted kernel space of normal domain.
TrustICT only needs to configure a small number of CPU registers,
and it is more effective than the schemes based on cryptography
which makes it can well adapt to the frequent mode switching on
multi-core platforms. We systematically study the potential attacks
on multi-core platforms such as double map attacks, semantic gap
based attacks etc., and then design and implement corresponding
countermeasures. The evaluation results on a hardware testbed
show that TrustICT is effective and incurs a small overhead on rich
Os.
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