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Abstract—Security patches in open source software (OSS) not
only provide security fixes to identified vulnerabilities, but also
make the vulnerable code public to the attackers. Therefore,
armored attackers may misuse this information to launch N-day
attacks on unpatched OSS versions. The best practice for prevent-
ing this type of N-day attacks is to keep upgrading the software
to the latest version in no time. However, due to the concerns on
reputation and easy software development management, software
vendors may choose to secretly patch their vulnerabilities in a
new version without reporting them to CVE or even providing
any explicit description in their change logs. When those secretly
patched vulnerabilities are being identified by armored attackers,
they can be turned into powerful “0-day” attacks, which can be
exploited to compromise not only unpatched version of the same
software, but also similar types of OSS (e.g., SSL libraries) that
may contain the same vulnerability due to code clone or similar
design/implementation logic. Therefore, it is critical to identify
secret security patches and downgrade the risk of those “0-day”
attacks to at least “n-day” attacks. In this paper, we develop a
defense system and implement a toolset to automatically identify
secret security patches in open source software. To distinguish
security patches from other patches, we first build a security
patch database that contains more than 4700 security patches
mapping to the records in CVE list. Next, we identify a set of
features to help distinguish security patches from non-security
ones using machine learning approaches. Finally, we use code
clone identification mechanisms to discover similar patches or
vulnerabilities in similar types of OSS. The experimental results
show our approach can achieve good detection performance. A
case study on OpenSSL, LibreSSL, and BoringSSL discovers 12
secret security patches.

Index Terms—security patch, vulnerability detection, open
source software

I. INTRODUCTION

Recent years have witnessed an impressive popularity of

open source software (OSS). As one of the biggest hosting

service providers, GitHub announced that there had been

31 million developers working across 96 million repositories

in 2018 [6]. Meanwhile, the number of vulnerabilities in

OSS continues to grow. A report from Snyk shows there is

a 53.8% increase in the number of published open source

vulnerabilities from 2016 to 2017 [25]. One reason is that the

source code of OSS can be carefully analyzed by attackers to

discover the unknown vulnerability. What’s worse, the security
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patch of vulnerability exactly points out the vulnerable code,

which teaches attackers how to generate exploits for attacking

the unpatched version. For instance, just one day after the

remote code execution vulnerability in Apache Struts 2 (CVE-

2017-5638) was publicly disclosed and fixed, exploit scripts

appeared in the wild. Later, due to its unpatched system,

Equifax got attacked and millions of personal data including

social security number were exposed [1].

Though timely patching the vulnerability is an effective de-

fense against those “N-day” attack, there exist some challenges

in real world. In many cases, security patches are included

in a large software patch or new version with other types

of patches, e.g., bug fixes and new features. Since applying

software patch or updating to new version increases the service

system downtime and introduces extra workload, admins or

users tend to postpone updating their running software until

a stable version is available or the security advisory like

Common Vulnerabilities and Exposures (CVE) shows that

there exists a severe security patch of vulnerability [13].

However, software vendors may secretly patch their vulner-

abilities without creating CVE entries or even describing the

security issue in its change log. One reason is the concern that

too many CVE entries or vulnerability fixes in the change log

may hurt the quality reputation of their software. In addition,

they may intend to block the publication of related CVE entries

until they think it is safe to publicly release them. However,

since the related patch or new version has already been

available, attackers can still carefully analyze the code changes

from the patch directly or from the difference between two

versions and then generate exploits to misuse these secretly-

fixed security vulnerabilities. To defend this, developers and

users need an approach to identify the existence of secret

security patch in open source software so that they can update

their software in time. Moreover, similar type of software may

contain the same vulnerabilities since code clone is common

in open source software and developers tend to make the same

mistakes when solving difficult intellectual problems [11].

In this case, analyzing the security patch in one software

(e.g., OpenSSL) can help identify and fix the corresponding

vulnerabilities in other software (e.g., LibreSSL) with the

similar functionality. We consider those vulnerabilities as one

type of “0-day” vulnerabilities.

In this paper, we develop a machine-learning based mech-

485

2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-0057-9/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN.2019.00056



anism to help automatically identify secret security patches

from the released software patches and the difference between

two versions of the open source software. First, since there is

no publicly available dataset on security patches, we create

a new security patch dataset that contains 4702 security

patches by crawling all the available reference links in CVE

entries [4] from year 1999 to 2018. Since security patches may

have different patterns when written in different programming

languages, we focus on C/C++ languages and pick out 1636

security patches written in C/C++. Also, we randomly fetch

1636 non-security patches from GitHub repositories [6].

To identify security patches, we face one major challenge of

identifying effective features to model the differences between

security patches and non-security patches. Based on manual

analysis of a majority of the collected security and non-

security patches, we identify a set of 61 features that belong to

three categories, namely, basic feature, syntactic feature, and

semantic feature. Next, we develop a machine learning based

approach to distinguish security patches from non-security

patches using the set of identified features. To increase the

detection accuracy, we adopt a voting algorithm that ensembles

five popular classification algorithms including Random For-

est, Bayes Net, Stochastic Gradient Descent (SGD), Sequential

Minimal Optimization (SMO), and Bagging. We randomly

choose 80% of our dataset as the training dataset and use

the remaining 20% as the testing dataset. The experimental

results show that our model can achieve a good performance

with 79.6% true positive rate and 41.3% false positive rate.

To further evaluate the effectiveness of our system, we

perform a case study on three open source SSL libraries, i.e.,

OpenSSL, LibreSSL, and BoringSSL, and discover 12 secret

security patches, among which the longest latency between the

secret patch and the public release is over two years.

II. SYSTEM OVERVIEW

Figure 1 shows the overview of our system, which consists

of three major steps. The first step is to construct a security

patch dataset for (i) extracting useful features for the machine

learning model, (ii) training a machine learning based security

model in the training phase, and (iii) evaluating the effective-

ness of the security model in the detection phase. By querying

all CVE entries in 1999-2018, we crawl 4702 security patches

from at least 898 open source projects. Among them, we focus

on the 1636 security patches from projects written in C/C++.

In addition, we randomly fetch 1636 non-security patches

from GitHub repositories. Therefore, our dataset contains 1636

security patches and 1636 non-security patches.

The second step is to derive a set of basic, syntactic, and se-

mantic features for the machine learning based security model.

Some features are collected from previous related work, and

other features are newly identified via manual observation of

our security patch and non-security patch database.

In the third step, we adopt a voting algorithm that ensembles

five popular classification algorithms including Random For-

est, Bayes Net, Stochastic Gradient Descent(SGD), Sequential

Minimal Optimization(SMO), and Bagging, to build the ma-

chine learning based model. We transform the features of each

patch into a vector along with a label marking if the patch is

security patch or non-security patch. To evaluate the system

performance, we randomly choose 80% of our dataset as the

training dataset and the remaining 20% as the testing dataset.

Fig. 1. System Overview

III. PATCH DATABASE COLLECTION

Since there is no public available security patch database,

we construct such as a database by querying CVE entries [4],

whose reference links may contain the URL of the patches.

Figure 2 illustrates an overall process of database collection.

Fig. 2. Overview of Data Collection

To collect security patch dataset, we crawl all the related

reference URLs that contain patches in all CVE entries from

1999 to 2018. To collect non-security patch dataset, we

download open source repositories that appear in the CVE list

and randomly choose the non-security commits as the non-

security patch dataset 1. We describe the methodology of data

collection in the following.

A. Security Patch Dataset

Up to 04/11/2018, the CVE list consists of 126,491

CVE entries [4]. Each CVE entry includes a CVE ID,

brief description of the vulnerability, and pertinent refer-

ence URLs of reports, advisories, and patches (if any).

Based on our observation, the reference URLs can be di-

vided into two categories according to the type of hosting

1The dataset is available at https://github.com/SecretPatch/Dataset
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service providers, namely, projects hosted on GitHub and

projects hosted on other websites. For the project hosted on

GitHub, the reference URL of a security patch is in the form

like: https://github.com/owner/repo/commit/commit hash. The

commit hash is a hash value that is the unique identifier

of a commit. The corresponding patch can be collected by

downloading the commit URL with appendix .patch, i.e.,

https://github.com/owner/repo/commit/commit hash.patch. On

GitHub, one commit is corresponding to one patch. Therefore,

each commit can be downloaded as a patch. We collect 4010

patches that belong to projects hosted on GitHub.

For the project hosted on other websites, e.g., its own

website, there is no uniform form of reference URLs that

can help tell if it contains any security patch. To solve this

problem, we crawl all the reference URLs in CVE entries

and use specific notations, i.e., diff, @@, +++, and ---
as indicators of existence of the patch. Once our crawler

recognizes such notations, it removes the HTML/CSS labels

and other unrelated contents in the web page (e.g., title,

description, and etc.) and then downloads the remaining part

as a security patch. Since many reference links before 2010

are no longer available, we only collect 692 security patches

in this way.

Our model aims to identify the security patch through the

syntactic and semantic patterns of the code. Since different

programming languages have different patterns, we focus on

patches of C/C++ projects that are very common in open

source ecosystem. Our database contains 1636 security patches

on projects written in C/C++.

Fig. 3. Patch Sample of CVE-2014-3158

B. Non-Security Patch Dataset

To train our model, we also need to collect a non-security

patch dataset. Theoretically, a patch is corresponding to a

vulnerability fix, bug fix, or feature update. However, due to

different version control philosophies, some software vendors

may release a big patch that mingles multiple patches. Also,

for projects that do not host in control version system like

GitHub, we may only generate a unified .diff file between an

original and a modified source tree as a big patch that contains

multiple patches. To avoid this problem, we collect the non-

security patches from projects that appear in the CVE list and

are hosted on GitHub, so that each commit is exactly one

patch. After we download all 898 related GitHub repositories

(about 1T size), for each project, we use the command git
log to get all the commits with its hash value. To reduce the

biases of specific projects, we randomly choose 1636 commits

as the non-security patch dataset. Since the hash value is

the unique identifier of a commit, we can filter out commits

already included in the security patch dataset by comparing

their commit hash values. Therefore, we obtain a security

patch and non-security patch dataset of the same size.

IV. SECURITY PATCH IDENTIFICATION

From previous work and our observation, we collect a set

of features that could distinguish between security patches and

non-security patches in a machine learning model. Based on

these features, each patch in our database can be represented

as a vector with a label of security patch or non-security

patch. After training a machine learning based model using

the supervised dataset, when given a new unlabeled patch,

our system can transform it into the corresponding vector and

then identify if it is a security patch.

A. Feature Extraction

A patch [7] contains differences between old and new

version files. Figure 3 shows an example of the patch for

CVE-2014-3158. Each difference shown in a patch starts with

a diff a/folder name/file name b/folder name/file name (e.g.,

line 1), and each difference may contain multiple change hunks

that are continuous deleted and added lines marked with - and

+, respectively. For instance, lines 9 and 10 is a change hunk.

Table 1 presents the features we collect in this work. We

borrow Feature 1-22 from Tian et al.’s work [26], which shows

that those features are effective on distinguishing vulnerability

and bug fixing patches from new feature patches. They con-

sider the changes in files, hunks, conditional statements, loops,

lines, characters, and function calls. Total refers to the sum of

removed and added number of these basic program features,

and Net is the number of the added minus that of the deleted.

In addition, our work aims to distinguish security patches from

non-security patches, which requires more features to represent

the difference between security patches (i.e., vulnerability

fix) and non-security patches (i.e., bug fix and newly added

feature). By manually comparing security and non-security

patches in our database, we have the following observations:

• Security patches are more likely to modify less code than

non-security patches.

• Security patches are more likely to introduce modi-

fications on operators and operands. For instance, in
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TABLE I
LIST OF FEATURES

No. Description Type
1 # of changed files

basic feature
2 # of hunks
3 - 6 # of removed/added/total/net lines
7 - 10 # of removed/added/total/net characters
11 - 14 # of removed/added/total/net conditional statements

syntactic feature

15 - 18 # of removed/added/total/net loops
19 - 22 # of removed/added/total/net function calls
23 - 24 # of total/net modified functions
25 - 28 # of removed/added/total/net arithmetic operators
29 - 32 # of removed/added/total/net relation operators
33 - 36 # of removed/added/total/net logical operators
37 - 40 # of removed/added/total/net bitwise operators
41 - 44 # of removed/added/total/net memory operators
45 - 48 # of removed/added/total/net variables
49 - 51 AVE/MIN/MAX Levenshtein distance within hunks (before abstraction)
52 - 54 AVE/MIN/MAX Levenshtein distance within hunks (after abstraction)
55 # of same hunk (before abstraction)
56 # of same hunk (after abstraction)
57 - 58 # and % of affected files

semantic feature59 - 60 # and % of affected functions
61 Any data dependency changes (True or False)

vulnerability caused by boundary problem, change > into

>= or change n to n-1.

• Security patches are more likely to move a piece of code

to another place with no other changes. For instance, it

is common to move a conditional statement inside a loop

outside for security patch.

• In security patches, the same or similar change hunk may

appear multiple times in different functions or files.

Therefore, we conclude 34 more syntactic features:

• # of total/net modified functions. Different from previ-

ous function calls which are represented by the function

name or pointer in change hunks, the number of mod-

ified functions represents how many functions contain

the change hunks. This number helps assess the direct

affected range of a patch. For instance, for a patch which

contains 3 change hunks within a function, this number

is counted as 3 in total and 1 in net.

• # of total/net/removed/added basic operators. We count

the total and net number of basic operators including

arithmetic, relation, logical, and bitwise operators which

occur in each patch. Also, we count these numbers in

removed part and added part, respectively.

• # of total/net/removed/added memory operators. We

count the corresponding number of C/C++ memory re-

lated operators which occur in each patch, e.g., malloc,

calloc, realloc, free, sizeof, and etc.

• AVE/MIN/MAX Levenshtein distance within hunks
(before abstraction). Levenshtein distance is a measure

of the similarity [20]. In our work, Levenshtein distance

within a change hunk is the number of deletions, inser-

tions, and substitutions required to transform the removed

hunk into added hunk. Since there are always many hunks

within one patch, the average, minimum, and maximum

Levenshtein distance among them are used to represent

such characteristics of a patch.

• AVE/MIN/MAX Levenshtein distance within hunks
(after abstraction). To further measure the similarity

of each pair of removed and added hunks, we abstract

the code. After removing the space and comment, we

replace all the identifiers with $. Then, we calculate the

corresponding Levenshtein distance on these abstracted

code.

• # of same hunks (before abstraction). We consider

every two exact same change hunks as a pair of same

hunks.

• # of same hunks (after abstraction). To count the pair

of similar hunks, we first remove the exact same hunk.

Then, after abstracting the code, we regard every two

same abstracted change hunks as a pair of similar hunks.

Moreover, we propose 5 semantic features:

• # and % of affected files. The number of affected files

is computed by counting the number of files that call the

modified functions in the given patch. The percentage is

calculated by dividing the number of affected files with

the total file number.

• # and % of affected functions. We compute the number

and the range of affected functions from code property

graph which combines control flow graph and data depen-

dency graph generated by Joern [28]. We combine several

nodes of a hunk as a node and then count the number of

connected node in the function level to get the number

of affected functions. The percentage is calculated by

dividing the number of affected functions with the total

function number.

• Any changes of data dependency. After combining

several nodes within a hunk as a coarse-grained node,

if any nodes connected or the variables in the connected

edge change, this value is true. Otherwise, it is false.
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TABLE II

PERFORMANCE ON COLLECTED DATASET

Training
Dataset

Testing
Dataset TP (%) FP (%) Precision Recall

2618 654 266 (79.6%) 132 (41.3%) 66.8% 79.6%

B. Machine Learning Model

We use a number of popular classification algorithms in-

cluding Random Forest [8], Bayes Net [5], Stochastic Gradient

Descent (SGD) [2], Sequential Minimal Optimization(SMO)

[21], and Bagging [3], in our machine learning model. How-

ever, each individual classifier cannot perform well. To im-

prove the performance, we adopt a voting algorithm that

ensembles the above five classifiers to do the majority vote.

We randomly choose 80% security and non-security patch

dataset and transform each of them into a vector of values

on above 61 features with its label “1” (i.e., security patch)

or “0” (i.e., non-security patch) as the input training data. In

the detection phase, we transform the remaining 20% patches

in our datasets into vectors and then apply our model. If a

vector is assigned “1”, the corresponding patch is detected as a

security patch. Otherwise, the corresponding patch is detected

as a non-security patch.

V. SYSTEM EVALUATION

To evaluate the effectiveness of our system, we conduct

experiments in three ways. First, we split our database into

training and testing dataset to evaluate the detection accuracy

of our model. Second, we apply our model on patches of 20

minor versions of OpenSSL 1.0.1 and compare our results

with previous work. Third, we extend our experiments to

several popular SSL libraries (i.e., OpenSSL, LibreSSL, and

BoringSSL) to discover a number of secret security patches.

A. Performance on Collected Dataset

We randomly choose 80% of our dataset as the training

dataset and the remaining 20% as the testing dataset (334

positive samples and 320 negative samples). We adopt a 10-

fold cross-validation to choose the best parameter configu-

ration. Our experiments are conducted on a machine with

3.1 GHZ Intel Core i7 CPU and 16GB RAM. The training

phase (including 2618 patches) takes 42s and the testing phase

(including 654 patches) takes 9s. Table II shows the true

positive (TP), false positive (FP), precision, and recall of our

testing results, respectively. Our model can achieve 79.6% true

positive rate and 41.3% false positive rate.

B. Performance on OpenSSL

We compare the effectiveness of our system with other

security patch identification system. To the best of our knowl-

edge, SPAIN [27] is the only work for this kind of research.

Though SPAIN focuses on binary level patch analysis, it can

be used to identify open source patches and it also conducts

experiments on an open source project - OpenSSL to evaluate

its accuracy. To compare with SPAIN, we apply our model on

all the patches between 20 minor versions of OpenSSL 1.0.1

series (i.e., all the commits from OpenSSL 1.0.1 to 1.0.1s).

Table III presents the comparison between SPAIN and

our work. The second and third columns show the number

of security and non-security patches that SPAIN and we

manually identify as the ground truth. The reason for the

different identified numbers is that SPAIN can only identify

the patches within one function with control flow changes,

but our work extends it to inter-function patches. Actually,

a patch may involve modifications across multiple functions

that have impacts on each other. SPAIN may regard a patch

of multiple function fixes as multiple patches whereas such

patch is regarded as one patch in our work. In addition, our

approach takes patches of header files into consideration while

SPAIN does not.

The percentage of security patches we can identify is 8%

higher than SPAIN. On the other side, our approach has a

higher number of false positive (e.g., 190) than SPAIN (e.g.,

47). We argue that our approach shows competitive results

when comparing with previous work such as SPAIN. Our

approach is able to cover inter-function patches, header file

patches, and patches without control flow changes whereas

SPAIN cannot. Besides, our approach has shown good per-

formance and scalability on a larger number of vulnerabilities

from various types of software in NVD, as shown in Table II. It

is difficult for SPAIN to provide a similar performance result,

due to the huge demanded efforts on obtaining the ground

truth for various binary code.

C. Case Study: SSL Libraries

To identify secret security patches in wild, we extend our

experiments to three open source SSL libraries, including

OpenSSL, LibreSSL, and BoringSSL. First, we apply our

toolset to identify the security patches from the commits of

above three projects from GitHub. Once a security patch is

identified, we use code clone algorithms [23], [24] to detect

if this vulnerability has been patched in other projects.

Table IV summarizes 12 secret security patches and the

fix information in these three SSL libraries. The first column

shows the CVE ID of each security patch in one project. The

Fix Date column of each project is obtained from the date

in the patch (commit) of each vulnerability that represents

the fix date. The grey background cell denotes the earliest fix

date of each vulnerability. The dash means such vulnerability

does not apply to this project. Each project’s Lag Day is the

date difference between the first fixed date of other projects

and its fixed date, during which attackers can launch “0-day”

attack on these similar type of software. “Not yet” means the

project contains such vulnerability and it has not been fixed

until now (12/06/2018). We get the second to the last column

by manually checking the advisory in CVE entry or its official

hosted website and then the Secret Day can be computed as

date difference between the CVE ID belonging project’s first

fix date and the advisory release date, which can be utilized

by attackers to attack unpatched versions.
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TABLE III

COMPARISON WITH A PREVIOUS WORK ON OPENSSL ANALYSIS

Technique Ground Truth Detection Result
# Security Patch # Non-Security Patch # TP # FP Precision Recall

SPAIN [27] 323 217 229 47 0.83 0.71

This work 294 365 231 190 0.55 0.79

TABLE IV

SECRET SECURITY PATCHES AMONG THREE SSL LIBRARIES

OpenSSL LibreSSL BoringSSLCVE ID Fix Date Lag Day Fix Date Lag Day Fix Date Lag Day
Public

Disclosure Date Secret Day

CVE-2018-5407 (OpenSSL) 04/19/2018 - Not yet 232+ - - 11/15/2018 240

CVE-2018-0734 (OpenSSL) 10/23/2018 - Not yet 45+ Not yet 45+ 10/30/2018 7

CVE-2018-0732 (OpenSSL) 06/11/2018 974 06/13/2018 972 10/11/2015 - 06/12/2018 973

CVE-2018-0739 (OpenSSL) 03/22/2018 - 08/06/2018 137 03/27/2018 5 03/27/2018 5

CVE-2017-3731 (OpenSSL) 01/18/2017 - 02/01/2017 14 - - 01/26/2017 8

CVE-2016-7053 (OpenSSL) 10/16/2016 849 07/11/2014 21 06/20/2014 - 11/10/2016 874

CVE-2016-7052 (OpenSSL) 08/22/2016 - - - 09/26/2016 35 09/26/2017 35

CVE-2016-6305 (OpenSSL) 09/10/2016 - Not yet 818+ - - 09/22/2016 12

CVE-2016-6304 (OpenSSL) 09/09/2016 - 09/27/2016 18 - - 09/22/2016 13

CVE-2016-6308 (OpenSSL) 09/10/2016 - Not yet 818+ - - 09/22/2016 12

CVE-2018-8970 (LibreSSL) 01/22/2015 - 03/22/2018 1134 - - 03/24/2018 2

CVE-2018-12434 (LibreSSL) 06/19/2018 982 06/13/2018 976 10/11/2015 - 06/14/2018 977

Below are several interesting phenomena we observe. First,

though each vulnerability listed in the table IV existed in at

least two projects, only one CVE ID was created for one of

them, and all others just secretly patched those vulnerabilities.

Second, the .../crypto/dsa/dsa ossl.c file in LibreSSL allows

a memory-cache side-channel attack on ECDSA signatures.

NVD published date of this vulnerability (CVE-2018-12434)

was 06/14/2018 while the new version that contains the

corresponding patch was released on LibreSSL’s website one

day early. Since only two changes were made in this new

version, it is not hard for attackers to analyze and utilize it to

attack unpatched version in one day. What’s worse, OpenSSL

contained the same vulnerability and it only released a patch

on the GitHub one week later (06/19/2018) without reporting

to CVE. And a new version that contains the patch was

released 30 days later on its website.

When we tried to request a CVE ID, CVE website asked

us to contact the corresponding participating CVE Numbering

Authority (CNA), i.e., OpenSSL Software Foundation. How-

ever, they replied us that this vulnerability could only cause

a local-host side channel attack, so no CVE was needed. In

contrast, there is no participating CNAs for LibreSSL, anyone

can request a CVE ID for LibreSSL by contacting MITRE

Corporation directly. We can see that the CNA mechanism

provides software vendors an opportunity to secretly patch

their vulnerability without creating a CVE ID. In this case,

when comparing OpenSSL with LibreSSL, users may draw

a biased conclusion that OpenSSL is more secure since the

number of its recent CVE is smaller.

Third, it may take long time for other projects to realize

those secretly patched vulnerabilities and take actions. CVE-

2018-0732, CVE-2016-7053, CVE-2016-6308, and CVE-

2018-8970 show that the date difference between the first fix

and a CVE entry assignment for another project is more than

two years. Since these software vendors do not have a good

channel to share the newly discovered vulnerabilities, attackers

may misuse those “0-day” vulnerabilities for a long time.

Lastly, the software version control process should an-

nounce security fixes more clearly and accurately. In

CVE-2018-8970, the int x509 param set hosts function in

x509 vpm.c file does not support a certain special case of a

zero name length, which causes silent omission of host name

verification. This can be exploited to launch man-in-the-middle

attack to spoof servers and obtain sensitive information via

a crafted certificate. Though there was a CVE ID assigned

to LibreSSL for this issue, LibreSSL described this as a bug

fix in its change log without mentioning any security related

issues. However, LibreSSL usually explicitly classifies all the

patches into security fix, bug fix, and new feature in its change

log. In this case, when a user only focuses on its change log,

it may bypass one patch since there is no vulnerability fix and

other small bugs are tolerable in the system.

VI. DISCUSSION AND LIMITATIONS

There may exist a long distance from identifying a sus-

picious vulnerability to truly triggering it as a real attack.

It has been reported that not all the vulnerabilities reported

in CVE have known approaches to trigger them [18]. In

addition, since a number of vulnerabilities without CVE IDs

have been triggered, it indicates the not all the security patches

have corresponding CVE IDs. We collect our security patch

database from all the available patch source in CVE list, which

may be biased towards some types of severe vulnerabilities.

For instance, we mention that OpenSSL refuses to assign a
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CVE ID for a local-host side channel vulnerability due to the

low exploitability in their opinion. Since the manual triggering

of suspicious vulnerabilities and evaluating their severity may

demand huge efforts and domain experts, we consider how to

identify exploitable vulnerabilities as a future work.

It is possible that our approach may be leveraged by

attackers. Actually, we wonder attackers might have already

misused secret patches to some extend. The goal of our work

is to promote software vendors to maintain their products

more normatively, increase the collaboration between software

vendors on information sharing, and finally eliminate this type

of “0-day” attacks.

The non-security patch dataset may still contain some

security patches due to the unknown secret security patches,

and it may introduce impacts to our experimental results. We

manually check 536 out of 1636 patches randomly chosen

from non-security patch dataset and identify 7% of them as

security fixes based on our domain knowledge. Similar to

previous work [14] [19], we argue this rate is acceptable since

machine learning is capable of dealing with noisy datasets. In

the future, we will further clean the dataset by removing those

security patches from the non-security patch dataset.

The present design of our system uses commits on GitHub

as the smallest unit of the patch. In practice, although GitHub

is one of the most popular open source software hosting

service provider, not all of the open source software is hosted

on GitHub. For open source software hosted on other websites,

patches can only be acquired from a diff file of the source code

of neighboring versions. However, the diff file may consist of

a number of change hunks belongs to multiple patches. For

a small diff file, we can simply separate it through keyword

matching. However, when this file is large, for instance, a main

version introduces many modifications, it is hard to separate

hunks into individual patches. We leave it as our future work.

Currently, our system only supports to identify security

patch in open source projects written in C/C++. Our system

can be adapted to other programming languages by modifying

features, e.g., syntax parsing related features 11-56. In our

future work, we plan to extend it to OSS projects written

in other types of programming languages and even multiple

programming languages.

VII. RELATED WORK

OSS vulnerability detection has become an active research

area. There are two main research directions: vulnerable code

similarity comparison and vulnerability pattern recognition.

For vulnerable code similarity detection, the traditional token-

based techniques remove all the whitespace and comments and

replace variable and function names with a specific character

to detect Type-1 and Type-2 code clone [22] that only makes

few modifications of identifiers, comments, and whitespace.

The tree-based techniques [9], [29] mainly transform the

program into Abstract Syntax Tree (AST) and then compare

the longest common sequence (LST). Graph-based techniques

[12], [17] use control and data dependence graph to detect

code clones as isomorphic subgraphs. For vulnerability pattern

recognition, machine learning or deep learning approaches

are proposed by extracting the patterns from the vulnerable

code and then searching the code with the same pattern.

VulPecker [15] uses different sets of features to detect different

types of software vulnerabilities. VulDeepecker [16] trained

a neutral network to detect buffer overflow and resource

management errors caused by library/API call.

Some work has attempted to create a database of security

patches. Seulbae et al. [10] collected data from eight well-

known Git repositories, and Zhen et al. [15] built a Vulnera-

bility Patch Database (VPD) from 19 products. However, the

size of these datasets are not sufficient to perform a machine

learning based study, when comparing to the thousands of

CVE entries on open source projects. Though Li et al. [14]

built a large-scale security patch database based on the Git

related records in NVD [4], they have not made their database

available to the public yet.

Certain secret security patches have been reported ad hoc in

different studies. Zhen et al. [16] found Xen silently patches

the vulnerability after the disclosure of CVE-2016-9104 in

Qemu. Their results also revealed the secret security patches

between Seamonkey and Firefox (CVE-2015-4517) as well as

between Libav and FFmeng (CVE-2014-2263). It motivates us

to perform a study on the secret security patches.

Some researchers have paid attention to patch analysis.

Zame et al. [30] made a case study on the difference between

security and performance patches in Mozilla Firefox. Perl et

al. [19] showed many statistic difference between vulnerability

contributing commits and other commits. However, they can-

not distinguish vulnerability fixes from non-security bug fixes.

Frank et al. [14] conducted the first large-scale empirical study

between security patches and non-security bug fixes, and it

provides analysis on the basic characteristics of security patch.

Xu et al. [27] presented a scalable approach to identify security

patches through the semantic analysis of execution traces.

However, it cannot handle cross-function security patches and

does not perform well on identifying non-security patches that

are similar to security patches.

VIII. CONCLUSION

In this paper, we develop a machine learning based security

patch identification system. Developers and users can use our

system to help identify secret security patches and decide if it

is the time to update to the new version or apply the patches.

We point out that once a security patch is identified, its

corresponding vulnerability should be detected in other similar

types of software and if identified, this patch can be utilized

to patch similar vulnerabilities. To evaluate the effectiveness

of our model, we build a database that is composed of the

security patches in the CVE list. We make it open-source to

promote public research on improving the security of OSS.

We discover a set of syntactic and semantic code features to

profile security patches. The experimental results show that

our system can achieve a good detection performance. We also

apply our system to three open source SSL library projects and

discover 12 secret security patches.
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