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Abstract

Driverless vehicles are becoming an irreversible trend in
our daily lives, and humans can interact with cars through in-
vehicle voice control systems. However, the automatic speech
recognition (ASR) module in the voice control systems is
vulnerable to adversarial voice commands, which may cause
unexpected behaviors or even accidents in driverless cars. Due
to the high demand on security insurance, it remains as a chal-
lenge to defend in-vehicle ASR systems against adversarial
voice commands from various sources in a noisy driving en-
vironment. In this paper, we develop a secure in-vehicle ASR
system called SIEVE, which can effectively distinguish voice
commands issued from the driver, passengers, or electronic
speakers in three steps. First, it filters out multiple-source
voice commands from multiple vehicle speakers by lever-
aging an autocorrelation analysis. Second, it identifies if a
single-source voice command is from humans or electronic
speakers using a novel dual-domain detection method. Finally,
it leverages the directions of voice sources to distinguish the
voice of the driver from those of the passengers. We imple-
ment a prototype of SIEVE and perform a real-world study
under different driving conditions. Experimental results show
SIEVE can defeat various adversarial voice commands over
in-vehicle ASR systems.

1 Introduction

Driverless cars, also known as autonomous cars or self-driving
cars, are no longer the things we would only see in sci-fi films,
but they are becoming an irreversible trend in our daily lives,
particularly due to the rapid development of sensor techniques
and advanced artificial intelligence algorithms. For instance,
MIT developed a human-centered autonomous vehicle using
multiple sensors and deep neural networks in 2018 [1]. From
April 2019, all new Tesla cars come standard with Autopilot,
providing the capability of switching modes between manual
driving and self-driving [2]. Waymo’s driverless cars have
driven 20 million miles on public roads by January 2020 [3].

The latest in-vehicle voice control system [4] provides a

convenient way for drivers and passengers to interact with
driverless cars. For example, we can use our voice to con-
trol in-vehicle entertainment systems, set destinations to the
GPS navigation system, and take back the full control of cars
from the self-driving mode [5]. However, the core module of
in-vehicle voice control system, i.e., automatic speech recogni-
tion (ASR) module, is vulnerable to various adversarial voice
command attacks [6—14]. Particularly, since most in-vehicle
ASR systems support speaker-independent recognition by
default [15], passengers can voice malicious commands to
ASR systems and thus control critical in-vehicle systems.
Moreover, remote attackers may hide a voice command into
a song [9]. When the song is played through car loudspeakers
or smartphones’ speakers, the malicious voice command in
the song can be recognized by ASR systems. It may cause
unexpected behaviors or even accidents in driverless cars.

A number of countermeasures [16—18] have been proposed
to defend ASR systems against adversarial voice commands.
They leverage short-term spectral features [19,20] or prosodic
features [21,22] to distinguish different users. However, as
the features of human voices typically are low dimensional,
advanced passengers can imitate a driver’s voice to bypass
existing defense systems [23]. Moreover, existing methods on
distinguishing different users’ identities are generally unre-
liable in a noisy environment [24], whereas in-vehicle ASR
systems demand a much higher security insurance against
adversarial voice command attacks to prevent possible car ac-
cidents. Furthermore, to prevent malicious voice commands
played by speakers, researchers have designed methods to
identify whether the voice commands come from humans or
loudspeakers. They rely on spectral features [18,25,26] and
noise features [17,27] to distinguish between humans and
speakers. They are all based on one underlying assumption
that voice commands come from a single source. However,
in the scenario of driverless cars, malicious voice commands
may come from multiple sources (i.e., multiple car speak-
ers). Therefore, the different features for multi-source voices
and single-source voices may interfere with distinguishing
between human voices and non-human voices [28].



In this paper, we propose a secure automatic speech recog-
nition system called SIEVE to effectively defeat various adver-
sarial voice command attacks on driverless cars. It is capable
of distinguishing voice commands issued from a driver, a pas-
senger, and non-human speakers in three steps. First, since
legal human voice commands are always single-source sig-
nals, SIEVE identifies and filters out multiple-source voice
commands from multiple car speakers. The multiple-source
detection is based on a key insight that when the same signal
is received multiple times in a short time period from multi-
ple sources, the overlap of the received signals will expand
the signal correlations in the time domain. Therefore, SIEVE
can identify multi-source voice commands by conducting an
autocorrelation analysis to measure the overlap of signals.

After filtering out multiple-source voice commands, the
second step of SIEVE is to check if a single-source voice
command is from a human or a non-human speaker. SIEVE
can accurately detect non-human voice commands by check-
ing features in both frequency domain and time domain. First,
voices from non-human speakers inherently have the unique
acoustic characteristic, i.e., low-frequency energy attenuation.
Such characteristic can be checked with the signal power
spectrum distribution in the frequency domain. However, so-
phisticated attackers may use low-frequency enhancement
filters to modulate the voice and thus compensate for the en-
ergy loss. To identify such modulated voices, SIEVE also
conducts a local extrema verification in the time domain. Our
key insight is that the local extrema ratio for modulated voices
is much greater than that for human voices. Moreover, we
demonstrate that attackers cannot modulate voices to bypass
the detection in both the time domain and frequency domain at
the same time. Hence, our dual-domain check ensures SIEVE
can effectively filter out various non-human voice commands.

Finally, SIEVE distinguishes the passenger’s voice com-
mands from the driver’s voice commands, since we may only
trust the driver but not the passengers. Our key insight is that
vehicles have fixed internal locations for the driver and pas-
sengers. Therefore, we can leverage the directions of voice
sources to distinguish the driver’s voice and passengers’ voice
even if passengers can imitate the driver’s voice. Particularly,
SIEVE measures the directions of voice sources by calcu-
lating the time difference of arrivals (TDOA) on a pair of
close-coupled microphones (i.e., a dual microphone). To deal
with some extreme cases when passengers lean forward and
have their head near the headrest of the driver’s seat, we also
develop a spectrum-assisted detection method to improve the
detection accuracy of SIEVE.

We implement a prototype of SIEVE and conduct extensive
real-world experiments on a four-seat sedan (Toyota Camry)
under various vehicle driving states, including idling, driving
on local streets, and driving on highway. The experimental
results show that our system can effectively defeat adversarial
voice command attacks. For example, SIEVE can achieve a
96.75% accuracy on distinguishing human voices from non-

human voices when the car is driving in noisy streets. It can

further identify the driver’s voice from human voices with

a 96.76% accuracy. Moreover, our system can be smoothly

integrated to vehicles by replacing the in-vehicle single mi-

crophone with a low-priced dual microphone and implanting

the detection module in one vehicle electronic control unit.
In summary, we make the following contributions:

e We develop a secure ASR system for driverless vehicles
to defeat various in-vehicle adversarial voice commands
by distinguishing the command sources from the driver,
passengers, and electronic speakers.

e We propose a dual-domain detection method to distin-
guish voice commands between humans and non-human
speakers even if the voices are carefully modulated to
mimic human voices.

e We provide a method based on the directions of voice
sources to distinguish the driver’s voice from passengers’
voices even if passengers can imitate the driver’s voice.

e We implement a prototype of SIEVE and real-world
experimental results show that our system can effectively
defeat adversarial voice commands.

2 Threat Model and Assumptions

We focus on the adversarial voice command attacks that ma-
nipulate the speech inputs to the in-vehicle ASR system. We
assume the vehicle’s electronic control unit (ECU) can be
trusted [29]. We assume the driver can be trusted to not issue
malicious commands; however, malicious voice commands
may be issued from in-vehicle loudspeakers, the speakers of
mobile devices, or passengers.

First, malicious voice commands may come from the in-
vehicle loudspeakers. It is common for people to connect
their mobile phones to car audio systems when playing music
or making phone calls. Also, CDs/DVDs are usually played
through speakers. Since music songs might be downloaded
from various untrusted sources, the attackers may edit the
sound tracks of audio files to voice the malicious commands
via a single speaker or multiple speakers. Particularly, armored
attackers may hide adversarial commands by minimizing the
difference between the malicious and the original audio sam-
ples [7-9]. Moreover, when a phone call is connected to the
vehicle speakers via Bluetooth, the people on the other side
may unintentionally or intentionally issue voice commands
to the ASR systems.

Second, if the driver puts their smartphones on mobile
speakers (handsfree mode) when making phone calls or play-
ing musics, a malicious command may be issued from the
driver’s smartphones. Similarly, a passenger’s smartphone
may be exploited to voice malicious commands. Thus, it is
necessary to identify the voice commands issued from the
speakers of mobile devices such as smartphones.

Third, passengers may issue dangerous or annoying hu-
man voice commands to ASR systems. For instance, kids
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Figure 1: Car Internal Structure and the Location and Orien-
tation of a Dual Microphone.

may unintentionally voice wrong commands to the vehicle
or intentionally mess with the recreation systems. Moreover,
we assume malicious passengers may bring or leave some
dedicated portable hardware to launch advanced attacks such
as those in an inaudible frequency range to humans [10-12]
(though the sizes of most dedicated hardware devices may
not be small). It is critical to distinguish the voice commands
from the passengers or their dedicated mobile devices.

3 System Design

We first provide an overview of our system and then present
the detailed techniques used in each detection step.

3.1 System Overview

Figure 1 shows the typical internal structure of a four-door
sedan, which has at least four speakers installed in four cor-
ners (front/rear and left/right) to achieve good stereophonic
experience. It has four seats for the driver (D), the front pas-
senger (Pp), the rear left passenger (Prr), and the rear right
passenger (Prr).

The entire defense system consists of three detection steps.
The first step is to identify and filter out the voices coming
from multiple speakers since human’s legal commands are
issued from single voice source. The second step is to detect
adversarial voice attacks from loudspeakers (i.e., replay at-
tacks), no matter the in-vehicle speakers or mobile speakers.
The third step is to identify the voice source from its direction
by using a dual microphone in the front of the sedan. This
step can distinguish voices from the driver and any passenger.

Step 1: Detecting Voice from Multiple Speakers. When
attackers use multiple vehicle speakers to perform voice com-
mand attacks, the reverberation effect is enlarged since a mi-
crophone captures the same signals multiple times at dif-
ferent moments. Since the overlapping of multiple copies
of the same signals within a small time expands the signal
correlations in the time domain, the linear prediction (LP)
residual [30] of the signal can be calculated to decide if the
voice commands are received from multiple speakers. More-
over, Hibert envelope and local enhancement techniques are

used to enhance the significant excitation. The basic idea
is that the relative time delays of the instants of significant
excitation remain unchanged in the audio signals captured
by the microphones. Therefore, through accumulating the
auto-correlation results over the entire voice command signal,
we can compare the different patterns to distinguish single-
source signals from multi-source signals. Comparing with
other methods [28,31,32], we adopt the LP residual method
since it can achieve a higher detection precision.

Step 2: Distinguishing between Human Voice and Voice
from Single Speaker. We develop two new approaches,
namely, power spectrum verification and local extrema cross-
check, to detect voice from an electronic speaker. Since
the common speakers can suppress the power of the low-
frequency signals, we use the power spectral density to distin-
guish the human voice from the replay voice. To escape our
power spectrum checking, the attackers may design an inverse
filter to compensate the speaker’s frequency response. We can
defeat this armored attack by performing a local extrema ver-
ification in the time domain. By combining these two checks
on both frequency-domain features and time-domain features,
we can accurately detect the voice coming from loudspeakers.

Step 3: Distinguishing Driver from Passengers. We use a
dual microphone to decide the direction of the voice com-
mands. The dual microphone consists of a pair of micro-
phones (M and M>) that are close to each other (e.g, 5 cen-
timeters). When a voice is captured by the two microphones,
we use a far-field model to measure the time difference of
arrivals (TDOA) [33] since the source-microphone distance
is much larger than the distance between these two micro-
phones. To maximize the detection accuracy, we orient the
dual microphone in a direction that the line connecting the two
microphones is perpendicular to the line connecting the driver
seat and the middle point of the two microphones, as shown
in Figure 1. The cross-correlation function of the two-channel
signals is effective on measuring the time delay between two
channels. As shown in Figure 2, the angle range (inside the
vehicle) can be divided into multiple small pie regions, since
the TDOA measured value and the propagation angle fol-
low a arccosine function (see details in Section 3.4). When
the voice propagation direction is perpendicular to these two
microphones, the measurement can achieve the highest preci-
sion on recognizing the driver. It is the reason why the dual
microphone is oriented in Figure 1.

With the orientation of the dual microphone, when a voice
comes from the driver’s direction, the cross-correlation func-
tion is almost central symmetric due to the negligible time
delay between two signal channels. When the voice comes
from any passenger, the cross-correlation function would be
left skewed. In Figure 2, the gray areas represent identifica-
tion regions for different passengers. In most cases it can
accurately distinguish the driver’s direction from those of
passengers, and we confirm it in our real-world experiments.
In some cases, it is challenging to distinguish the driver from



Figure 2: Voice Source Directions to Dual Microphone.

the passenger sitting behind the driver (i.e., Pry), particularly,
when the driver may lean towards the right side of the driver’s
seat (e.g., resting their arms on car armrests) and the passen-
gers may lean forward and have their head near the headrest
of the driver’s seat. We develop a spectrum-assisted detection
technique that combines the location of a particular voice
with the voice’s specific spectrum features to improve the
detection accuracy.

3.2 Detecting Multiple Speakers

The basic idea of the multiple speaker detection is that the
reverberation effect occurs since the microphones will capture
the same signal multiple times at different instants.

Signal Representations. In the time domain, the captured
signals x(n) =Y.' | A; - s(n — N;) are the overlapping of sev-
eral time-shifted signals with different attenuation coefficients,
where s(n) is the original signal, N; and A; denote the time
delay and the attenuation coefficient of the i-th signal, and m
is the number of speakers. The different time delays depend
on the relative locations between microphones and speakers,
which are fixed in vehicles. The only difference between the
signals captured by two microphones is a slight time shift
related to the distance of microphones, so we only need to
process the captured signal in any one of the two microphones.

The time delays can be extracted from the significant excita-
tion regions with high signal-noise ratio (SNR). However, the
noise will adversely affect the extraction of the time delays.
Therefore, it is necessary to reduce the noise and amplify the
strong excitations. Also, to reduce the second-order correla-
tions and inhibit the reflection, we extract the linear prediction
residuals from the captured signals. According to the parame-
ter estimation model [30], the linear prediction residuals are
obtained as e(n) = x(n) + ¥¥_, ax - x(n — k), where a is the
predictor coefficients and p is the order of the prediction filter.

Signal Enhancements. The peaks in the linear prediction
residuals are of double polarity, which introduces fluctuations
to the autocorrelation function. For convenient calculation,
linear prediction residuals could be converted into a single
polarity form by the Hilbert envelope [34], denoted as h(n) =

\/€%(n) + €3 (n) where ej(n) is the Hilbert transform of e(n).

The Hilbert envelop signal can describe the amplitude
change of the original signal. However, the weak peaks in the
Hilbert envelop may lead to spurious high values in the auto-
correlation calculation. Thus, we adopt the local enhancement
method to further highlight the high SNR regions. We set a
sliding window to calculate the signal mean value in the local
area. Then, the Hilbert envelop can be enhanced by taking the
square of the original signal over the local signal mean as

2
g(n) = )
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where g(n) is a preprocessed signal of Hilbert envelope and
(2M + 1) denotes the length of the sliding window.

Autocorrelation Analysis. When taking a L-length segment
in g(n) as a reference, the autocorrelation function C(s) of
the signal g(n) can be calculated as

Ly ' g(n)-glnts)
I ) B )
where N is the start index and L is the segment length. The
autocorrelation value is normalized by the square mean of the
segmented signal. The autocorrelation function is calculated
over the interval [—S,S]. S indicates the maximum detection
range that should be larger than the maximum time delay.
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where D, and D,,;, indicate the maximum and minimum
distance between speakers and microphones, and vy is the
speed of sound in air with a typical value of 345 m/s. f5 is
the sampling rate of microphones. Only if S is larger than the
maximum possible time delay, the autocorrelation function
can record all the time delays information for the speakers.

Judgment Criteria. The autocorrelation function will have
several peaks that correspond to the time delays between dif-
ferent propagation paths. For accurate estimation, we judge
the results by multiple signal segments rather than a single one.
For each autocorrelation function, we only extract the most
significant peak that corresponds to the most distinct time de-
lay. In the i-th signal segment, the offset of the highest peak in
the autocorrelation function is denoted as p; = argmax C;(s).
To reduce the effects of noise and spurious peaks, we ac-
quire the statistical distribution of p; with the autocorrelation
functions in multiple signal segments.

For a single voice source, most of p; values are close to zero,
resulting in a concentrated distribution. For multiple voice
sources, the p; distribution is rather dispersed. That is because
the voices come from different speakers have different arrival
moments, resulting in large time delays in the captured sig-
nals. Based on these attributes, we can distinguish the patterns
between multiple-speaker signals and single-speaker signals
according to the dispersion of the p; distribution. The dis-
persion P is measured as the proportion of p; in the interval
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Figure 3: Power Spectral Density for Voice Signals.

[—d,d], where d is a small number compared with S. A is the
decision threshold that obtained from multiple experiments. If
P > A, it means the time delays are centered around 0 and the
voice comes from a single source. If P < A, the voice comes
from multiple sources due to the dispersed distribution. Since
the voices from multiple sources are most likely adversarial
voices generated by attackers, we can safely filter out these
multi-source voices in the first step.

3.3 Identifying Human Voice

After verifying a voice coming from a single source, we
detect and filter out the voice that comes from loudspeak-
ers. We solve this challenge by combining two approaches,
namely, frequency-domain power spectrum verification and
time-domain local extrema cross-check, to ensure that the
voice indeed comes from humans.

Frequency Domain Verification. This approach is based on
a noticeable timbre difference between a human voice and a
replay voice sound from loudspeakers. Human beings voice
commands through the phonatory organ, resulting in a sound
frequency typically from 85 Hz to 4 kHz [35]. However, a
dynamic loudspeaker can suppress the signals in the low-
frequency range due to the limited size, especially under the
frequency of 500 Hz [36]. Thus, even a speaker replays a
recorded human voice that contains the same frequency com-
ponents, the timbre is totally different from the genuine one.
The main reason is that different power distributions of fre-
quency components lead to different timbre [37].

By leveraging the characteristic of different power distri-
butions, we can distinguish the voice coming from a human
or a loudspeaker. The captured voice will be verified with
the power spectral density, specifically the ratio of the low-
frequency power. The frequency of human voice ranges from
85 Hz to 4 kHz, among which the low-frequency components
are dominant, as shown in Figure 3(a). The replay audio sound
from loudspeaker has the similar frequency components; how-
ever, the sharp decrease in the low-frequency components in-
creases the relative ratio of the high-frequency components, as
shown in Figure 3(b). In our design, a voice that comes from a
single source is further verified by evaluating the power ratio
of the low-frequency components (85 Hz - 2 kHz) to all fre-
quency components. If the voice indeed comes from humans,
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Figure 4: Time-domain Waveform for Voice Signals.

the power ratio should be greater than a specific threshold.

However, an ingenious attacker may compensate the loss of
the low-frequency energy by modifying the recording file in
the frequency domain. By estimating the transmission prop-
erties K(f) of the loudspeakers, an attacker can design an
inverse filter K~ (f), where K(f)-K~'(f) = 1. Then the
attacker can reconstruct the audio file with K~!(f) for com-
pensating the speaker frequency response, and we call such
voice as modulated replay voice. As the frequency response
of the loudspeaker and the inverse filter cancel each other
during playback, it is difficult to solely rely on the frequency-
based method for distinguishing the modulated replay voice
from the genuine voice. Fortunately, we could combine a
verification approach in the time domain.

Time Domain Verification. We observe there are different
patterns in the local extrema ratio of the human voice and
the modulated replay voice. In a 3-length window of time-
domain signal, if the midpoint is the maxima or minima in the
window, we define the midpoint as a local extrema [38]. Also,
the ratio of the local extrema amount to the total signal length
is defined as local extrema ratio. Though the local extrema
are not directly related to the spectrum, the number of local
extrema can indirectly reflect some spectrum features.

The attacker can only compensate the voice signals with
the amplitude spectrum. The phase spectrum is hard to be
compensated because of the difficulty to measure the speaker
phase response. Due to the phase mismatch errors in the
modulated voice, the time-domain signal will contain ex-
tremely small oscillation, namely ringing artifacts (see Figure
4). These artifacts cannot be heard by a human, but the local
extrema ratio of the modulated replay voice is much greater
than that of the human voice in the time domain.

Because the local extrema ratios of the human voice and
the modulated replay voice are different, we can identify
if the voice indeed comes from a human or a loudspeaker
by combining both the frequency-domain power spectrum
verification and the time-domain local extrema cross-check.
A verified human voice command must satisfy two conditions:
(1) the low-frequency power dominates; (2) it complies with
the human voice patterns in local extrema ratio. It is difficult
for attackers to meet both requirements by manipulating the
limited-sized loudspeakers.



Figure 5: Principle of Time Difference of Arrival.

3.4 Identifying Driver’s Voice

In the third step, we identify the voice source via the voice
propagation direction and thus distinguish the commands
voiced from the driver or any passenger.

Time Difference of Arrival. Two spatially separated micro-
phones can detect the voices from different propagation direc-
tions using the time difference of arrival (TDOA), as shown in
Figure 5. The distance between M| and M, is denoted as Dy.
Since the distance between voice source and microphones is
larger than the distance between two microphones, we use a
far-field model [39] to calculate the time difference of arrivals.
The angle between the voice propagation direction and MM,
is denoted as o. If o is O or &, the propagation direction is
parallel to M M>, resulting in the largest difference of arrival.
If o is equal to 7/2, the propagation direction is perpendicular
to MM, and the difference of arrival will be zero. Due to
the microphone placement shown in Figure 1, zero difference
of arrival means the voice comes from the driver.

In Figure 5, D is the difference of the propagation distances
between the voice source and two microphones. Thus, the
time difference of arrivals can be calculated as At = D /vy =
(Dg - cosa)/vy. Because the voice is recorded as a digital
signal, the captured voice is discrete in the time domain. In
the captured signal, the difference of arrivals in sampling
units AN can be estimated as Ny — 1 < AN < Ny + 1, where
No = At - f;. To simplify the calculation, we approximate AN
as AN o D. Thus, we can obtain AN = Dy -cosc.- fs/vo. The
propagation angle o that calculated as follows will be used to
determine the direction of the voice source.

o= arccos(AN LAY )
Dy fs
Detection Precision. The effects of the AN changes on o
are different. When o is approximately equal to 7w/2, for each
change of one unit in AN, the change in o can be calculated
according to Taylor series expansion: Aot = x + o(x), where
x=vo/(Do- f;) < 1. When o approaches 0 or =, for each
change of one unit in AN, the change in o can be calculated
according to Puiseux series expansion: Act = v/2x + o(x).
As aresult, if o &~ /2, for each unit change of AN, Ao will
be less than that one when o ~ 0 or ®. More units are con-
centrated around o = 7/2. Thus, the system becomes more
sensitive to the angle change near the driver’s direction, pro-

viding the optimal detection precision for the driver’s voice.

Signal Preprocessing. When a sound signal arrives, we first
check if it is a usable signal. Since the frequency of speech
signal is between 85 Hz (f;) and 4000 Hz (f3,), a fast Fourier
transform (FFT) is used to obtain the frequency spectrum X (k)
of the captured signal x(n), where X (k) = FFT (x(n)). Then
we judge the speech signal by verifying the power ratio of a
band-pass signal Rp = Zih:k, Xz(k)/Xf:/(z)Xz(k) > ¢. K is the
amount of points in the FFT. k; = | K f;/fs ], kn = | Kfn/fs],
where | x| means the largest number less than x. € = 0.57 is
a threshold value obtained from our experiments. The signal
will only be processed in this step when Rp > €, because the
higher SNR signal is suitable for the TDOA algorithm [40].

To reduce high-frequency noise and obtain a smooth signal
waveform, we process the captured signal with a pre-set low-
pass filter in the frequency domain. The smooth voice signal
y(n) can be obtained by the inverse fast Fourier transform
(IFFT). y(n) =IFFT (X (k) - H(k)), where H (k) is a low pass
filter that inhibits the high frequency components.

Cross-Correlation Evaluation. According to the TDOA al-
gorithm, the cross-correlation function between two-channel
signals is given by the following equation.

no+Il—1
Cia(s)= ), »(n—s)y2(n),~Su<s<Sw, ()
n=ngp
where ny is the start index, [ is the segment length, y; (n) and
y2(n) are the signals captured by M; and M>. S,, is the max
shift value that subjects to the constraint Sy, > Dy - f;/vo.

In the cross-correlation function, the shifted sampling
unit with the maximum cross-correlation value indicates the
time delay between two channels. The corresponding off-
set value of the cross-correlation peak is denoted as so =
argmax(Cj2(s)). According to Equation (4), the voice propa-
gation angle can be estimated as oL = arccos|[(so-vo)/(Do- f)]-
Note if a voice comes from any passenger, so will be a nega-
tive value as the propagation angle a is greater than 7t/2.

In Figure 1, the decision criterion is |0t — /2| < o if
a signal is recognized as the driver’s voice. o7 is an angle
threshold that demarcates the decision boundary. Considering
the relationship between o and sg, we only need to use the
decision criterion |so| < sy with an offset threshold s7. If so
satisfies the above condition, it means the voice comes from
the direction approximately perpendicular to M M>. Thus, the
captured voice can be recognized as coming from the driver.

Spectrum-assisted Detection. In real-world situation, the
driver may lean to the right side on the armrest during driving,
and its voice may fall into the angle range of the rear-left
passenger. To identify the driver’s voice more robustly, we
develop a spectrum-assisted detection technique to allow the
voice of the driver to move within a wider angle range without
sacrificing the detection accuracy. The basic idea is to com-
bine specific spectrum characteristics of the wake-up voice
command (e.g., "Hi, SIEVE") with the direction of the voice.



To determine the same voice source (i.e., the driver), we
record the spectrum histogram and the propagation direction
of previous wake-up commands. For the i-th command that
has been successfully recognized as the driver’s voice, the m-
bar spectrum histogram of the wake-up command is denoted
as v} Jj=1,...,m, and the propagation angle for the i-th voice
command is denoted as o. For the next (i + 1)-th command,
the received wake-up command must satisfy two conditions.
First, the spectrum statistics of wake-up commands are similar,
indicating the voice commands come from the same person.
The spectrum similarity can be measured using the root-sum-
square of histogram difference (¥;(vi"™" —v/)?)(1/2) < 1hy,
where th is a similarity threshold. Second, the voice move-
ment is within an acceptable wider range (e.g., the driver’s
voice cannot come from the seats on the right), which is
measured by the angle difference |ot! — a®| < thy, where
o = 1/2 is the theoretical measured angle of the driver. And
the angle threshold th; can be /4, indicating that the driver
sits on the left side of the car. If a newly received wake-up
command satisfies both conditions, we would consider the
voice command is coming from the driver.

With the spectrum-assisted detection method, our sys-
tem can successfully recognize the driver’s commands even
though the driver is in a different sitting posture. Also, if the
person sitting in the seat directly behind the driver leans for-
ward and has his head near the headrest of the driver’s seat,
our system can still reject his commands since the commands
only satisfy the angle constraint but not both constraints.

4 Experimental Results

In our experiments, a TASCAM DR-40 portable digital
recorder with two spatially separated microphones is used
to capture the voice signals, as shown in Figure 6(a). The
distance between the two receivers Dy is 5 ¢cm. The sam-
pling rate of both microphones is 96 kHz (f;). We not only
analyze the data captured in the lab environments, but also
test our system in real world, as shown in Figure 6(b). The
vehicle model is Toyota Camry LE 06 with two Scion TC
XB 6.5-inch speakers and two Kicker 43DSC69304 D-Series
6x9-inch speakers. To test more loudspeakers, we use three
smartphones (iPhone X, Google Nexus 5, and Xiaomi Mi 4)
with their built-in speakers. Since we cannot modify the elec-
tronic control unit (ECU) of the vehicle, the system runs in
an environment on a laptop with Intel Core 17-7700, 2.8 GHz
CPU with 16GB RAM.

4.1 Accuracy on Detecting Multiple Speakers

In the multiple speakers detection, the linear prediction resid-
uals are obtained by a 12-order linear prediction filter. A
sliding window with 2001 units length is used to enhance the
preprocessed signals. The length of the signal segments is
512 units, and the maximum offset value is also 512 units
because the maximum distance difference between speakers

(a) Tascam DR-40. (b) Vehicle Testbed.
Figure 6: Experiment Setup.

and microphones is 1.5 meter in our experiments. Accord-
ing to Equation (3), S should be greater than 417 units. The
threshold A is set as 0.33 through 42 experiments. Under this
condition, the total recognition accuracy can reach 83.3%.

We conduct experiments by using different combinations
of speakers. The test audio was originally collected by the
digital recorder with a sampling rate of 96 kHz. One 4-track
audio file with 15 track combinations (4 combinations for 1
speaker, 6 combinations for 2 speakers, 4 combinations for
3 speakers, and 1 combination for 4 speakers) is edited via
MATLAB vector operations. The test recording file is finally
generated by the wavwrite tool [41]. The detection accuracy
of a single or four in-vehicle speakers is 100%, while the
average accuracy of detecting two and three speakers is 66.7%
and 75%, respectively. It is challenging to identify two front
speakers or two rear speakers since in that case AD is small
and easy to ignore. However, when considering the voice
from those two speakers as from one source, we still can filter
them out according to their directions in the third step.

4.2 Accuracy on Detecting Human Voice

By evaluating the power ratio of low-frequency components,
we can distinguish the human voice from the replay voice
sound from loudspeakers. In Figure 7(a), 97.3% of human
voices have the low-frequency power ratio of over 0.995. The
low-frequency power ratio of a replay voice is distributed and
less than that of a human voice. Based on these features, we
can distinguish if the voice commands sound from the driver
or a loudspeaker. In our experiments, the detection accuracy
on replay voices is 99.05% with the threshold of 0.96.

We also confirm that the low-frequency power of the mod-
ulated replay voice dominates after the artificial enhancement,
which makes our frequency-based method unreliable. There-
fore, we should also cross-check the voice in the time domain,
where the voice pattern can be obtained by calculating the
local extrema ratio. The pattern difference of the human voice
and the modulated replay voice is illustrated in Figure 7(b).
Because of the ringing artifacts, the modulated replay voice
has a larger local extrema ratio, typically greater than 35%.
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Figure 7: Frequency-domain and Time-domain Features for
Detecting Human Voice. (a) the low-frequency power ratios
between human voice and replay voice; (b) the local extrema
ratios between human voice and modulated replay voice.

While the local extrema ratio of human voice is typically less
than 35% due to the statistical smooth.

Therefore, we can successfully distinguish the human voice
from the modulated replay voice via the local extrema cross-
check methods. When the decision threshold is 0.35, the de-
tection accuracy can achieve 99.62%.

4.3 Accuracy on Detecting Driver’s Voice

A series of experiments are conducted to distinguish voices
coming from the driver or a passenger. The length of the
signal segments is 512 units. The maximum offset S,, is 64,
which should be greater than the theoretical maximum peak
offset (AN)mqx = 14 units.

We first perform experiments with five basic voice propaga-
tion angles (0, ©/4, m/2, 3n/4, T) in a quiet lab environment.
Figure 8(a) shows the results of cross-correlation in loga-
rithmic form with normalization, verifying the correctness
of our theoretical analysis. When the propagation angle o
is 0 or 7, the absolute offset of the peak |so| is 14 units, the
same as (AN) gy When o is /4 or 31/4, the absolute off-
set of the peak |so| is 10 units, which follows the equation
50 & (AN ) jpax - cos(a). The peak offset sq is near 0 when the
voice comes from the direction perpendicular to M;M>. This
property enables the system to distinguish the driver’s voice
and the voice coming from any passenger. Another intriguing
property in Figure 8(a) is the different detection precision
over various angles. The o changes from 0 to /4 are pre-
sented by 4 units, while 10 units are used to measure the o
changes from 7/4 to m/2. Higher precision can be achieved
near the angle of /2, which means we can get the best detec-
tion performance in the driver’s direction. It explains why we
orient two microphones with a 45-degree angle to the vehicle.

We also conduct experiments in a real car to distinguish
the driver’s voice from passengers’ voices. Figure 8(b) shows
the cross-correlation functions of the driver’s voice and three
passengers’ voices. The cross-correlation functions of the
passengers are left-skewed with negative peak offsets since
the propagation angles are greater than 7t/2. The driver’s voice
has a near-zero peak offset due to the propagation angle of
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Figure 8: Experimental Results under Different Situations. (a)
cross-correlation functions for 5 propagation angles in a quiet
lab environment; (b) cross-correlation functions for the driver
and three passengers.
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Figure 9: The Spectrum Features of the Wake-up Command
for 6 Users in PCA Low-dimensional Subspace.

7/2. The absolute peak offset of Prear-1, is 6 units, which is the
closest to the driver. Thus, according to the decision criterion,
SIEVE can distinguish the driver from three passengers with
a decision threshold (s7) of 2. In the experiments, 2437 signal
segments are tested and the overall detection accuracy can
achieve 96.76%. The false positive rate is 2.86%, while the
false negative rate is 4.44%. The statistics show the system
is accurate and robust when distinguishing the driver’s voice
from the passengers’ voices.

To verify the validity of the spectrum-assisted detection
method, we collect 60 wake-up commands that are issued
from 6 different users. Then we utilize a 10-bar spectrum
histogram (from O to 2 kHz) to extract the spectrum features
of the wake-up command. With the similarity threshold #h
of 0.081, the accuracy of correlating two voice commands
can achieve 92.72% (i.e., only 262 out of 3600 pairs are mis-
judged). After applying the PCA dimension reduction [42],
we can visualize the spectrum features in a 3-D subspace
shown in Figure 9. The features of a single user form a clus-
ter, which clearly differs from other clusters that represent
different users. The PCA subspace verifies the effectiveness
of the spectrum-assisted method. Moreover, it only takes 19
ms to check the spectrum similarity constraints.

4.4 System Robustness

We conduct extensive experiments to study the system robust-
ness, which may be impacted by vehicle driving states, the



# of Speakers Idling Local Highway
1 100% 83.3% 58.3%
2 66.7% 58.3% 66.7%
3 75%  66.7% 75%
4 100%  100% 100%
Total 833% 73.8%  71.4%

Table 1: The Detection Accuracy for Different Number of
Speakers Under Different Driving States.

placement of microphones, and driver’s sitting positions.

Vehicle Driving States. Three types of driving states are
tested in our experiments: idling, driving on local streets, and
driving on highway. 1dling refers to running a vehicle’s en-
gine but the vehicle is not in motion. The car is in a low-noise
environment during idling. Driving on local streets means that
the car runs at a low speed of around 20 miles per hour, where
the car is usually in a medium-noise environment. Driving on
highway indicates that the car runs at about 50 miles per hour
on highway, with the highest level of environmental noise.
First, when detecting multiple speakers under each driving
conditions, 42 voice segments are collected as the inputs of
the autocorrelation algorithm to judge if the sample comes
from multiple speakers. The experimental results for multiple
speakers detection are shown in Table 1. We can see that
the detection accuracy decreases gradually from the idling
condition to the highway condition. Among them, the most
significant change is the single speaker detection accuracy,
which decreases considerably with different conditions. When
driving on highway, the outside noise is so complex and unpre-
dictable that the received signals contain a lot of noise peaks,
which generate spurious high values in the autocorrelation
calculation. Therefore, some signals from a single speaker
may be incorrectly classified as multiple-source signals. The
problem can be solved by using sound absorption material,
better denoising algorithm, or multiple microphones scheme.
Second, we evaluate the detection accuracy of human voice
under three driving states. Table 2 shows the driving states
have little impact on the human voice detection, since the
signal power is much greater than the noise power. Compared
with the idling state, the detection accuracy only decreases by
3.26% when driving on the highway. Also, we discover that
the driving noise has a higher influence on the time-domain
verification than the frequency-domain verification, because
the driving noise mainly affects the waveform in the time
domain, not the statistical values in the frequency domain.
Third, one big challenge for the driver’s voice identifica-
tion is the interference from outside noise. When the received
signals are mixed with strong noise, there will be unexpected
fluctuations in the cross-correlation function. These fluctua-
tions will eventually offset the expected peaks, usually in the
0-offset direction due to the common-mode interference [43].
Table 3 shows the results of distinguishing the driver and the
passengers. In the case of high interference, the driver’s voice

Driving State Accuracy
Idling 97.46%
Driving on Local Street  96.75%
Driving on Highway 94.20%

Table 2: The Detection Accuracy of Human Voice under
Different Driving States.

Voice Source Idling Local Highway
Driver Mean -0.11 0.38 1.09
¢ Stdev 415  3.03 2.11
Front Mean -11.31 -10.99 -8.88

Passenger Stdev  5.98 4.67 4.75

Rear Right Mean -8.02  -6.57 -5.31
Passenger Stdev  4.04 3.29 5.00

Rear Left Mean -5.36  -5.30 -4.57
Passenger Stdev ~ 3.58 3.27 3.75

Table 3: The Peak Offsets for the Driver and Passengers under
Different Driving States.

can still be distinguished from the passengers’ voice but the
offset discrimination becomes moderate.

Relative Distance and Height from Microphones. In our
scheme, the TDOA model is based on a far-field model. A
quantitative experiment is conducted to evaluate the impacts
of the distance between the voice source and the microphones
and the height of microphones relative to the horizontal plane.

To evaluate the impacts of the voice source distance, 25
experiments are conducted and 2728 sample segments are
acquired. In our experiments, 5 propagation angles (0, /4,
n/2, 3n/4, ) are tested. The testing range for voice source
distance is from 1 foot to 5 feet with a spacing of 1 foot. From
the experimental results illustrated in Figure 10(a), we can
see that the measurement error is less than 2 offset units when
the voice source distance is greater than or equal to 3 feet.
Also, when the distance is less than or equal to 2 feet, the mea-
surement error increases since the assumption of the far-field
model is not applicable. However, inside vehicles, most sound
sources are more than 2 feet away from the microphones.

To explore the effect of the voice source relative height
on measurement accuracy, we conduct 20 experiments and
collect 1795 voice segments. We evaluate the measurement
error in 5 different propagation angles (0, /4, n/2, 3n/4, ).
Because of the far-field model, the horizontal distance be-
tween the microphones and the testing voice source is set to 3
feet, and the relative vertical height of the testing voice source
issetto 0.5, 1, 1.5, and 2 feet, respectively. The experimental
results are shown in Figure 10(b). With the propagation angle
of /2, the voice source relative height has little impact on
the measuring accuracy, since the relative height does not in-
troduce an additional distance difference. However, when the
propagation angle is not 7t/2, the measuring error increases
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Figure 10: Measurement Accuracy on Distance and Height.
(a) measurement error vs. relative distance; (b) measurement
error vs. relative height.

with the relative height of the voice source because of the
extra distance differences of arrival. The measuring error is
more obvious when the propagation angle is close to 0 or
7. However, the measuring errors in all cases are less than 3
offset units when the relative height of the voice source is not
larger than 2 feet. Therefore, the relative vertical height of the
voice source has minimal impact on our measurement.

Driver’s Sitting Positions. As the driver’s seat can be ad-
justed according to the driver’s preferences, the driver’s voice
source would move forward or backward. In addition, accord-
ing to different drivers’ driving habits, the driver’s position
may lean towards left or right side. Therefore, we need to
explore the influence of the different sitting positions on the
measurement accuracy. As shown in Figure 11(a), the five
most common sitting positions (normal, front, rear, left, right)
are used to test the measurement accuracy. The microphones
are positioned at a 45 degree angle to the front right of the
driver’s normal position. For each sitting position, 4 sample
instances are tested, and the experimental results are shown
in Figure 11(b). In ideal circumstances, a voice signal comes
from a normal position will have a zero offset value in the
cross-correlation function. However, in the real-world situ-
ation, the measurement error is 1 offset value for the voice
coming from the normal position. When the driver moves
forward or left, the voice propagation angle will be slightly
less than 1/4, and the voice cross-correlation will have a pos-
itive peak offset. When the driver moves back or right, the
voice propagation angle will be a little greater than /4, and
the voice cross-correlation will have a negative peak offset.
The offset values of the front position are larger than those of
other positions, while the offset values in the right position
are smaller than others. As the absolute offset values in most
cases are less than 3, different sitting positions have little im-
pact on the detection results. Thus, the decision threshold s7
is set to be 2, which can successfully distinguish the driver’s
voice even at different sitting positions.

4.5 Performance Overhead

Table 4 shows the the system performance overhead includ-
ing running time and memory size for each detection step.
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Figure 11: Experimental Results of Measurement Accuracy
on Different Sitting Positions. (a) relative position of differ-
ent sitting positions. (b) offset values of the instances with
different sitting positions.

Detection Step Running Time Memory
Multi-speaker Detection 134 ms 111 MB
Human Voice Detection 47 ms 10 MB

Driver’s Voice Identification 33 ms 23 MB
Total Overhead Costs 214 ms 144 MB

Table 4: Performance Overhead for Detection Step.

Running time is measured as the average processing time for
a single voice sample, and memory overhead measures the
memory space occupied by the running program. The total
running time for a voice sample is 214 ms in single-core mode
with a 2.8GHz CPU, and the total occupied memory size is
144 MB. Since the running time is measured using slow Mat-
lab code, we believe the optimized C code or assembly code
may further reduce the running time.

Our system can be well supported by the modern in-vehicle
computing platforms. For example, the in-vehicle embed-
ded computing devices by Neousys Technology are config-
ured with 2.3GHz-3.6GHz processor, up to 64GB DDR4
RAM [44]. FPGA-based or GPU-based hybrid Electronic
Control Unit (ECU) can achieve hardware acceleration for
in-vehicle computing [45] [46]. Since the driverless vehicle
can deploy multiple ECU modules for different tasks [47], it
is feasible to embed our system into a dedicated ECU module
to avoid interfering other tasks running on other ECUs.

5 Discussions

Though our system design is customized to one popular sedan
internal structure, it can be extended to other vehicle models
or future driverless car models. In the left-driving countries
(e.g., U.K. and Japan) where the driver’s seat is on the right,
it is easy to adopt our system in those cars by mirroring
the placement of the microphones and adjusting the location
algorithm accordingly. Though most cars have four built-in
speakers installed at four window corners, some models of
cars have different numbers of speakers installed at different
locations [48]. Since our speaker detection mechanism is
effective on detecting the voice coming from more than one



speaker, it works well on different number of speakers.

Our current system design uses as few as two microphones
close to each other. Thus, it is convenient to be installed as
either built-in or external car microphone system with minor
change on vehicle’s interior design. The microphones in our
prototype can divide the angle change between 0 and 7 into
28 regions; however, the microphones with a higher sampling
rate may provide a fine-grained angle measurement. Also, a
high-end microphone can reduce the noise in the background
by supporting advanced denoising algorithms such as Fourier
Bessel expansion [49]. It is also plausible to deploy more
microphones (or a microphone array) in the future car designs.
Thus, we can achieve a more accurate localization of the
sound source in the three-dimensional space [50].

Our system integrates several detection methods that can
be generalized and applied in other applications. For instance,
the multiple speaker detection technique may be adopted in
smart home systems to prevent malicious voice commands
from household speakers. In the circumstances where sound
sources have relatively fixed locations, our single voice source
identification solution may be useful to determine the identity
of the source. Moreover, our replay voice detection solution
can be applied to enhance the security of voice-activated smart
doors or other IoT devices.

6 Related Work

Automatic Speech Recognition (ASR) Systems. An auto-
matic speech recognition system converts the speech signal
into recognized words, which could be the inputs to natural
language processing. Since it requires little special training
and leaves hands and eyes free, ASR is ideal for drivers to
issue commands to the vehicle systems. According to the ca-
pabilities of ASR systems, an ASR system can support either
isolated word or continuous speech, read speech or sponta-
neous speech, speaker-dependent or speaker-independent [51],
small vocabulary or large vocabulary, finite-state or context-
sensitive language model [52], and high or low SNR [53].

Attacks on ASR Systems. The ASR systems are vulnerable
to several voice-based attacks. For existing speaker identifi-
cation solutions [54, 55], it remain as a challenge to defeat
armored impersonation attacks [23, 56] and replay attacks
[17,18,26]. Speech synthesis attack [57,58] is a relatively
complex method to perform attacks by a text-to-speech con-
version. With the development of adversarial learning, more
sophisticated attacks have emerged. Dolphin Attack [10,59]
utilizes ultrasonic modulation to move voice commands to an
undetectable frequency band. Psychoacoustic model can be
leveraged to generate the adversarial voices below the human
perception threshold [6]. Voice commands can also be in-
jected into voice controlled devices by laser modulation [60].
Some malicious voice commands can be understood by ASR
systems, but not by humans [61]. Thus, attackers can hide
voice commands in noise-like signals and control the mobile

voice recognition systems [8]. CommanderSong [9] demon-
strates a more practical attack that embeds voice commands
into music songs without being noticed by human beings.

Attacks on NLP module. Threats may also come from the
natural language processing module of the voice control sys-
tems. Zhang et al. focus on the intent classifier in NLP mod-
ule, generating semantic inconsistency by specific interpreta-
tion [62]. Moreover, an attack called Skill Squatting utilizes
systematic error to hijack voice commands on Amazon Alexa
and route them to a malicious third-party application with a
similarly pronounced name [63]. Mitev et al. use skill-based
Man-in-the-Middle attack to hijack conservation between
Alexa and victims [64]. Attackers can also leverage voice mas-
querading attack to steal users information by impersonating
as a legal application and communicating with the users [65].

Sound Source Localization. The most popular way of sound
source localization is to utilize the time delays of arrival
(TDOA) in different sound receivers [66]. Particularly, the
direction-of-arrival (DOA) can be measured on a pair of mi-
crophones [67]. DOA techniques can be used to verify voice
commands for IoT devices [68]. DOA is also utilized to detect
articulator dynamic within a short distance for securing the
mobile ASR systems [69,70]. The 3-D sound source can be
determined by using an array of multiple microphones [71,72].
With different installations of microphone array, such as pla-
nar array [73] or rectangular prism [39], we may use different
location estimation algorithms. An advanced method uses
blind source separation technique to locate multiple sound
sources simultaneously [74]. Moreover, sound source localiza-
tion can also be achieved by other methods such as Gaussian
mixture models [75] or golden section searching [76].

7 Conclusion

In this paper, we propose a secure in-vehicle ASR system
called SIEVE to defeat adversarial voice command attacks on
voice-controlled vehicles. We utilize the physical attributes of
voices to distinguish the driver’s voice from other adversarial
voices in three steps. First, multi-source signals are filtered
out according to the diffusion of autocorrelation on linear
prediction residuals. Second, voice attacks from non-human
speakers are filtered out by cross-checking both the frequency
domain and time domain. Third, the driver’s voice is deter-
mined from its propagation direction with a dual microphone.
We implement a system prototype and conduct experiments
in real cars. The experimental results show our system can
achieve a high detection accuracy in real-world situations.
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