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Abstract

By decoupling control and data planes, Software-Defined
Networking (SDN) enriches network functionalities with de-
ploying diversified applications in a logically centralized
controller. As the applications reveal the presence or ab-
sence of internal network services and functionalities, they
appear as black-boxes, which are invisible to network users.
In this paper, we show an adversary can infer what applica-
tions run on SDN controllers by analyzing low-level and en-
crypted control traffic. Such information can help an adver-
sary to identify valuable targets, know the possible presence
of network defense, and thus schedule a battle plan for a later
stage of an attack. We design deep learning based methods
to accurately and efficiently fingerprint all SDN applications
from mixed control traffic. To evaluate the feasibility of the
attack, we collect massive traces of control traffic from a real
SDN testbed running various applications. Extensive experi-
ments demonstrate an adversary can accurately identify var-
ious SDN applications with a 95.4% accuracy on average.

1 Introduction

As a promising network paradigm, Software-Defined Net-
working (SDN) has attracted much attention from both in-
dustry and academia. It is being widely deployed in real-
world environments, such as cloud networks [5]], data cen-
ters [28]], and next-generation mobile networks [7]. SDN
separates control and data planes with a logically central-
ized SDN controller managing the whole network. A wide
range of innovative applications are deployed in the con-
troller to enable diversified network functionalities, such as
load balancing [10], denial-of-service (DoS) attacks detec-
tion [24}71]], and network security forensics [61]]. They call
high-level application programming interfaces (APIs) pro-
vided by the controller to build their control logic. The con-
troller translates the API calls into low-level control traffic,
e.g., OpenFlow [8] traffic, to enforce network policies in
SDN switches. To prevent potential attacks, control traffic
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is usually encrypted with the transport layer security (TLS)
protocol [8].

SDN applications provide various network services and
functionalities in the network and appear as black-boxes by
design to switches. Therefore, network users do not know
what applications are running on controllers. It is critical
for attackers to be aware of what applications are running on
the controller before launching their attacks. Attackers may
leverage this information to identify valuable targets, under-
stand the presence of network defense, and develop a battle
plan for a future attack. For example, if attackers know there
is no TopoGuard [27] security application in SDN, a topol-
ogy poisoning attack can be directly launched to hijack net-
work flows [27]]. In contrast, if attackers detect the presence
of TopoGuard, they can customize their attack plan to bypass
the defense, e.g., leveraging Port Amnesia [56]).

In this paper, we show that what applications are running
on SDN controllers can be inferred by analyzing low-level
control traffic even if the traffic is encrypted. The key in-
sight behind our inference attack is that different SDN appli-
cations call APIs with different behaviors, which results in
diverse patterns of control traffic. For example, Anonymous
Communication [42] periodically rewrites action fields of
flow rules with FLOW_MOD control messages, while Traffic
Monitor [6] periodically collects flow statistics from flow
rules with STATS_REQUEST and STATS_REPLY control mes-
sages. The number of packets, the length of packets, and the
ratio of incoming and outgoing packets for the control traffic
of the two applications are all significantly dissimilar. Such
patterns still exist though the control traffic is encrypted. To
our best knowledge, inferring applications running on con-
trollers has not been considered so far as a potential attack
vector in SDN. Previous studies [12}21}32,(39.|52,/57]] fo-
cus on fingerprinting SDN networks, host communication
patterns, and composition of flow rules by actively sending
probing packets. Our work here fingerprints SDN applica-
tions by passively analyzing control traffic without sending
any packets.
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Nevertheless, we face two challenging problems to suc-
cessfully fingerprint SDN applications as follows:

* How to accurately characterize the pattern of control
traffic for an application?

* How to efficiently identify multiple applications with
mixed control traffic?

For the first problem, the key challenge is that high-
level SDN applications generate massive, encrypted, and
low-level network control packets, which results in labor-
intensive, time-consuming, and difficult manual analysis for
characterizing the patterns of control traffic. Particularly,
complicated SDN applications call many types of APIs,
which results in overlaps of API calls between different SDN
applications. For example, Load Balancer [4] generates
STATS_REQUEST and STATS_REPLY control messages to cal-
culate the throughput of a flow, and leverages FLOW_MOD con-
trol messages to determine the port for forwarding the flow.
However, the above three types of control messages are also
partly generated by Traffic Monitor [6] and Anonymous
Communication [42]. Moreover, there are some identical
control packets for different applications, which further in-
creases the difficulty to characterize the patterns of control
traffic.

To address the problem, we transform network control
packets into a time series and apply deep learning to au-
tomatically extract patterns for different applications from
it. We try to maintain raw information of control traffic in
the time series as much as possible to improve the accuracy
of pattern extraction. Specifically, each element in the time
series denotes a packet, and the value of an element is the
packet length. When a packet is sent from controllers to
switches, the corresponding element is multiplied by -1. Be-
sides, the order of elements in the time series is consistent
with the order of packets appearing in control traffic. Conse-
quently, most raw information of control traffic is naturally
encoded into the time series, such as the lengths of packets,
the directions of packets, etc. Thus, the time series can be
directly fed into deep neural networks for accurate and au-
tomatic feature extraction. Although the contents and delays
of packets are missed, they are unhelpful to characterize the
patterns of control traffic considering that the packets are en-
crypted and their delays are usually changeable.

For the second problem, the key challenge is that one sin-
gle TCP connection between a controller and a switch con-
tains control packets generated by multiple applications con-
currently running on the controller. An adversary cannot
separate the control traffic of an application from the mixed
control traffic to infer what it is. A naive method is to train a
deep neural network with all possible combinations of mixed
traffic to build a classifier that gives the compositions of ap-
plications. However, the number of combinations exponen-
tially grows with more applications. Thus, the deep neural
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network quickly becomes exceedingly complicated for clas-
sifying the exponential combinations of applications. It is
extremely time-consuming and not scalable to train such a
complicated deep neural network.

Fortunately, we can solve the problem by dividing it into
several subproblems. We train multiple classifiers for multi-
ple SDN applications. Each classifier solves a 2-class classi-
fication problem, i.e., whether mixed control traffic contains
traffic of an application or not. The training samples for each
classifier are two types of mixed control traffic that includes
or excludes traffic of an application. Thus, the structure of
deep neural networks is simplified and each classifier can
be trained in parallel, which significantly reduces the train-
ing time. By merging the output results of all classifiers, we
know what applications run on controllers.

We conduct experiments in a real SDN testbed consist-
ing of commercial hardware switches and a popular open
source controller. We deploy 10 SDN applications on the
controller, ranging from network performance optimization
to network monitor and network security enhancements.
We collect about 6,000,000,000 control packets with dif-
ferent combinations of applications and translate them into
many time series of equal lengths. We systematically ex-
plore three state-of-the-art deep learning models, i.e., Con-
volutional Neural Network (CNN) [34], Long Short-Term
Memory (LSTM) [26], and Stacked Denoising Autoencoder
(SDAE) [59]], to train classifiers for fingerprinting SDN ap-
plications with time series. The results show that CNN per-
forms the best, which achieves an average accuracy of 95.4%
to fingerprint different SDN applications. Besides, we find
that the accuracy can be further improved by increasing the
length of a time series.

We summarize our key contributions as follows:

¢ We uncover a new attack vector in SDN, which al-
lows an adversary to infer what applications are run-
ning on an SDN controller by analyzing low-level and
encrypted control traffic.

* We develop techniques to accurately and efficiently fin-
gerprint SDN applications with mixed control traffic.

* We collect a large dataset of control traffic from a real
SDN testbed and systematically evaluate the feasibility
of fingerprinting SDN applications with it.

The rest of the paper is organized as follows: Section [2]
introduces background on SDN and deep learning. Sec-
tion [3| provides our techniques to fingerprint SDN appli-
cations. Section [ describes data collection methods and
datasets. Section [5] evaluates the effectiveness of fingering
SDN applications. Section [f] discusses our current limi-
tations and possible countermeasures against fingerprinting
SDN applications. Section [7]reviews related work and Sec-
tion [8| concludes the paper.
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2 Background

In this section, we briefly introduce the necessary back-
ground of SDN and deep learning.

2.1 SDN

Software-Defined Networking (SDN) is an emerging pro-
grammable network framework that decouples control and
data planes. As shown in Figure [, SDN consists of three
main layers: an application layer, a control layer, and a data
plane layer. Multiple applications concurrently run in the ap-
plication layer. They obtain a highly abstracted view of the
network and make network policies by calling APIs provided
by the control layer. The control layer manages installed net-
work applications and establishes connections with network
switches in the data plane layer. It translates API calls of ap-
plications into low-level control messages to tell switches on
how to forward and process packets.

| (o) (] (o) (e (o)

API I

‘ SDN Controller ’

Figure 1: The framework of SDN.

The standardized communication protocol between the
control layer and the data plane player is OpenFlow [8§]].
OpenFlow also specifies functions of SDN switches and en-
ables controllers to manage switches in an open, vendor-
neutral, and interoperable way. It defines various control
messages to enable diversified functionalities, such as de-
vice capabilities advertisement, packet forwarding control,
flow statistics reporting, and network events notification. We
summarize main control messages and their functionalities
in Table E} Furthermore, as control messages contain sensi-
tive network information and critical network decisions, they
are usually encrypted with the TLS protocol.

2.2 Deep Learning

Deep learning has made amazing achievements in many as-
pects, such as speech recognition, natural language process-
ing, and face recognition. With the support of sufficient data,
models with deep structure fit data well and thus can be
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Table 1: Main Control Messages in OpenFlow.

| Category | Message [ Functionality
State FLOW_MOD Modify rules in different
Modification GROUP_MOD tables tQ control packet.
METER_MOD forwarding and processing.
FLOW_STAT*T | Collect various flow
Statistics GROUP_STAT* | statistics measured by rules
Collection METER_STAT* | in different types of tables
PORT_STAT* and ports of switches.
Device SWITCH_CONFIG | Setand query configuration
Configuration | TABLE_CONFIG | parameters in switches.
HANDSHAKE . .
Capability | TABLE_FEATURE Idemlft};l SDN S“g.t i ?es o dt
Announcement | GROUP_FEATURE gf‘f‘;ry tet‘rl;apa . lest a
METER FEATURE | Gifferent tables support.
PACKET_IN Notify network events to
Event PORT_STATUS controllers, e.g., new flows
Notification FLOW_REMOVED | arriving, and send data
PACKET_OUT packets to switches.
Liveness ECHO_REQUEST | Verify liveness and conduct
Verification ECHO_REPLY customized measurements.

* A pair of request and reply messages.
T FLOW_STAT can also be used to know all flow rules in switches.

applied to multiple tasks, such as classification and predic-
tion. Compared to traditional machine learning that requires
designing a sophisticated feature extractor with expert ex-
perience, deep learning adopts a universal learning method
to automatically extract features from massive data, which
avoids the heavy workload of manually designing features.
Different types of deep neural networks (DNNs) have been
designed by researchers for different purposes. Out of all
existing types of DNNs, we explore three popular types of
DNNss to fingerprint SDN applications.

Convolutional Neural Network (CNN). CNN [34] has been
widely used in computer vision systems. It contains an in-
put layer, an output layer, and multiple hidden layers that
are convolutional layers, pooling layers, and fully-connected
layers. Convolutional layers perform a convolution opera-
tion to the input and create feature maps that contain ab-
stract features. Pooling layers reduce the dimensions of data
by downsampling. CNN typically contains several convolu-
tional and pooling layers to extract more abstract features.
Fully-connected layers perform final classification with out-
put feature maps. CNN can well characterize the spatial re-
lationship of data and search for the most important local
features. As the positions of SDN control packets in a net-
work flow have strong space relationship due to control logic
of applications and may have evident local features, CNN is
suitable to characterize patterns of control traffic.

Long Short-Term Memory (LSTM). LSTM [26] is a vari-
ant of Recurrent neural network (RNN) that uses feedback
connections to store representations of recent input events.
LSTM improves RNN for learning long-term dependency in-

22nd International Symposium on Research in Attacks, Intrusions and Defenses 503



formation of sequences and avoiding the problem of vanish-
ing gradient. A common LSTM unit consists of a memory
cell, an input gate, an output gate, and a forget gate. The
cell is responsible for remembering information over arbi-
trary time intervals so that it can keep track of the depen-
dencies between the elements in the input sequence. The
three gates regulate the flow of information into and out of
the cell, deciding whether to let the information in, whether
to produce the output, and whether to forget the information.
Due to the network structure, it captures temporal dependen-
cies between data. LSTM may be suitable to process control
packets of SDN applications since control packets naturally
have temporal dependencies.

Stacked Denoising Autoencoder (SDAE). Autoencoder
(AE) is a special feedforward neural network, consisting of
an input layer, a hidden layer, and an output layer. The in-
put layer and the hidden layer act together as an encoder that
compresses data from the input layer into a low-dimensional
representation. The hidden layer and the output layer act
together as a decoder that reconstructs the data back, i.e., de-
compressing the representation into something that closely
matches the original data. Stacked Denoising Autoencoder
(SDAE) [59] stacks multiple AEs together to form a deep
network architecture and adds noise to the input data, which
makes the network robust. SDAE learns meaningful data
representations. Particularly, we may get low-dimensional
and highly compressed representations of control traffic to
fingerprint SDN applications with SDAE.

3 Fingerprinting SDN Applications

In this section, we first present the threat model and the key
insight for fingerprinting SDN applications. We then intro-
duce practical challenges and design methods to solve them.

3.1 Threat Model

In our threat model, we consider control traffic between an
SDN controller and a switch is protected with TLS/SSL. We
assume an adversary can eavesdrop control traffic between
the controller and a switch. Attackers may eavesdrop SDN
control traffic in different ways [[13}|15H17133,149./68]], such
as conducting ARP poisoning for switches and controllers to
make control traffic first pass a listening host [17], placing
a device between controllers and switches to intercept con-
trol traffic [|16]] [1_1 intercepting a forwarding link to eavesdrop
control traffic [13]], and dumping control traffic through lis-
tening mode of switches [15]]. Particularly, Yoon et al. [[68]]
demonstrate the feasibility of eavesdropping control traf-
fic with real experiments. We do not require an adversary
know payloads of control packets that are usually encrypted.

'SDN control traffic may be carried by an inherently adversarial Internet
Service Provider (ISP) [16].
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Figure 2: Patterns of control packets for Learning Switch
and Anonymous Communication.
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Figure 3: Examples to illustrate that accurately characteriz-
ing patterns of control packets for an application is difficult.

Moreover, an adversary may not insert, modify, delay or drop
control packets. We do not assume SDN controllers, appli-
cations, or switches are compromised by an adversary.

3.2 Key Insight and Challenges

We first give intuitive examples to illustrate our key in-
sight on fingerprinting SDN applications, i.e., different ap-
plications generate different patterns of control traffic due
to their inherent control logic. Figure and Figure
show the patterns of control packets for Learning Switch
and Anonymous Communication. The patterns for the two
applications are significantly different. Learning Switch
receives a PACKET_IN message (orange packets) to ana-
lyze a packet for a flow and sends back a FLOW_MOD mes-
sage (blue packets) to install flow rules on how to for-
ward the packets for the flow. Consequently, the control
traffic of Learning Switch consists of multiple pairs of
PACKET_IN and FLOW_MOD messages. However, Anonymous
Communication periodically inspects all flow rules in a
switch with a FLOW_STAT message (red packets). After that,
it sends multiple FLOW_MOD messages to rewrite actions of
flow rules to modify packet headers for anonymous commu-
nication. Different control logic of the two applications re-
sults in different patterns of control traffic in many aspects,
i.e., packet lengths, directions of packets, relative orders be-
tween packets, etc. The patterns still exist even if controllers
encrypt control traffic with TLS/SSL. Therefore, an adver-
sary can fingerprint SDN applications by analyzing patterns
of control traffic.

However, there are two key challenges in real SDN en-
vironments. The first challenge is how to accurately char-
acterize the pattern of the control traffic for an application.
The control traffic is low-level and encrypted, which leads
to a hard description of patterns of control traffic for differ-
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ent applications. Particularly, patterns of control traffic for
some applications are mutable due to different network flows
in switches. As shown in Figure the pattern of control
traffic for Learning Switch changes if massive new flows
come quickly. The reason is that the application is busy pro-
cessing the burst PACKET_IN messages. It takes some time
to respond to the messages. Besides, different applications
may have similar patterns of control traffic. For example,
Figure [3b| shows that control traffic for ARP Proxy consists
of multiple pairs of PACKET_IN and PACKET_OUT messages
(green packets). It looks similar to control traffic in Figure[2a]
since we cannot know the content of the encrypted pack-
ets. We just see there are many pairs of uplink and down-
link packets both in Figure [2a] and The only difference
here is that ARP Proxy has larger uplink and downlink con-
trol messages. We need a method that can generalize well
to accurately characterize the patterns of control traffic for
different applications.

Control
Plane

Data
< Plane

Figure 4: Mixed control packets with Learning Switch,
Anonymous Communication, and ARP Proxy.

The second key challenge is that control traffic for multi-
ple SDN applications is mixed in a single TCP connection
between a controller and a switch. We cannot easily divide
mixed control traffic into multiple types of pure control traf-
fic for identifying each application in turn. Figure ] shows
the mixed control packets with three applications. Actually,
the types of packets (colors in packets) are not known from
the adversary’s view due to encryption. It is difficult to infer
which packets belong to an application especially when there
are some identical packets, i.e., blue packets in Figure [
Furthermore, control traffic becomes more complicated with
more applications running on controllers. Although we may
infer the compositions of applications for one time without
dividing mixed control traffic, the number of the composi-
tions exponentially grows with the number of applications.
We need a method that can efficiently identify multiple ap-
plications with mixed control traffic.

3.3 Methodology
3.3.1 Packet Transformation

To accurately characterize the pattern of control traffic for
an application, we apply deep learning since it can auto-
matically extract features and conduct classifications from
enough datasets. Moreover, classification models trained
by deep learning can achieve a good generalization ability.
However, we cannot directly feed SDN control packets into
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neural networks. The reason is two-fold. First, each bit in
control packets is encrypted, which does not maintain the
original information. Feeding full packets into neural net-
works may significantly reduce the accuracy of fingerprint-
ing applications. Second, the size of control packets can
be large, e.g., up to 12144 bits in Ethernet-based networks.
Training deep neural networks with massive large packets is
time-consuming.

In order to efficiently train an accurate classifier, we try
to maintain useful information and remove unnecessary in-
formation in control packets. We transform control pack-
ets into a time series that can be the raw input for deep
neural networks to automatically extract features and build
classifiers. Formally, consider a; is the i-th control packet
in a packet series S = [aj,a3,...,ay]. We transform S into
S ={[f(a1), f(az),.., f(am)]. Here, f(a;) is a transformation
function that maps a control packet into a real number. It is
defined as follows:

|aj|, if a; is sent to controllers
flai) =

—|aj|, if aj is sent to switches

Here, 1 <i < m and |a;| denotes the length of the packet
a;. Although the transformation process is simple and fast,
useful information for SDN application classification is nat-
urally encoded into the time series. The lengths of control
packets are denoted by the absolute values of the numbers
in the time series, the directions of packets are denoted by
the signs of the numbers, and the relative orders of packets
are denoted by the positions of the numbers. Thus, we can
directly feed each time series into deep neural networks to
conduct pattern extraction. Although the encrypted payloads
of packets and inter-packet delays are lost in the time series,
we consider they are little helpful for identifying an SDN
application.

3.3.2 Task Decomposition

Our task is to identify multiple applications that concurrently
run on SDN controllers with mixed control traffic. As the
mixed control traffic cannot be split, a naive method is to
train deep neural networks with all possible combinations of
control traffic to build a multi-class classifier that gives the
compositions of applications running on SDN controllers.
Formally, assume that there are n possible applications run-
ning on a controller and control traffic trace is denoted by
t, we aim to give a classifier C that assigns a label ¢ to t,
where ¢ € [0,1,..,2" — 1], i.e., possible combinations of n
SDN applications. As shown in Figure [5a if we directly in-
fer the compositions of possible n applications running on
a controller, a classifier should output 2" types. We need
to build a deep neural network with a large amount of pa-
rameters to classify the types of exponential scales. There-
fore, the neural network quickly becomes exceedingly com-
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Table 2: SDN Applications in Our Testbed and Corresponding Control Messages.

Main Control Messages
SDN Applications 8
FLOW_MOD GROUP_MOD FLOW_STAT GROUP_STAT | PORT_STAT PACKET_IN PACKET_OUT | ECHO
) Topology Discovery™*[11] X X X v v
Basic Network ] (oot v
Functionalities Learning Switch![3] X X X X
ARP ProxyT [ X X X v v
Network Traffic Monitor! [6] X X v v X X X
Monitor Link Delay Monitor®[31] X X X X X v v v
Network Opt. Load Balancer! [4] ‘ v ‘ v v X v v X ‘ X ‘
S . TopoGuard* [27] X X X X X v v X
ecurit
. y DoS Detection*[71] v v v v X v v X
and Privacy
Enhancement Anonymous Comm* [42] v X v X X X X X
Scan Detection*![41] v X X X X v v X

* For applications without source code, we implement and run them on Floodlight according to papers.

 For applications with source code, we directly run them on floodlight.

¥ We implement Scan Detection with the TRW-CB algorithm in the paper [41]].

2" Types of Control Traffic 0: consist of none of the n apps

@ 1: consist of app-1
2: consist of app-2

@ 51 3: consist of app-1 and app-2

|:> ’ 2"-Classifier ﬁ

Control Traffic

L 2"1: consistofall napps

(a) A model of deep learning for the original task.

Control Traffic Includes App-i & Control Traffic Excludes App-i

Train

U
|:>’ 2-Classifier ﬁ@{

(b) A model of deep learning for a subtask.

1: contain app-i

Control Traffic

0: contain no app-i

Figure 5: Task Decomposition.

plicated with many applications. Training such a classifier is
time-consuming and not scalable.

Thus, in order to efficiently identify multiple applications,
we divide the original task into several subtasks. We train
n binary classifiers [C},Cy,...,Cy] for n applications. Each
classifier G (1<;<,) only answers if the mixed control traffic
t contains control traffic of the i-th application. As shown in
Figure [5b] we feed two types of control traffic, i.e., control
traffic including and excluding the i-th application, to train
the classifier C;. Thus, the architecture of neural networks
is simplified since a classifier only outputs two classes, i.e.,
containing control traffic of the i-th application or otherwise.
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Moreover, each classifier is independent and can be trained
in parallel to reduce total training time. By testing mixed
control traffic in each well-trained classifier, we can know
what applications run on controllers.

4 Data Collection

To successfully build an accurate classifier, enough training
data is required for deep learning to learn underlying patterns
and enable good generalization to unseen samples. As far as
we know, there are no public traces of SDN control traffic. In
this section, we provide the method of collecting the traces
and introduce the dataset.

4.1 Data Collection Methodology

We build a real SDN testbed with five commercial hardware
SDN switches, Edgecore AS4610-54T, and a popular open
source controller, Floodlight. We deploy the controller on a
server with a quad-core Intel Xeon CPU E5504 and 32GB
RAM. We attach one host on each switch. Each host has
a dual-core Intel i3 CPU and 4GB RAM. All hosts in our
experiments run Ubuntu 16.04 LTS. In order to generate real
data traffic in our testbed, we inject real traffic traces from
CAIDA [2] with TCPReplay.

We deploy 10 SDN applications on the controller, ranging
from basic network functionalities, advanced network per-
formance optimization, network monitor to security and pri-
vacy enhancements. We list these applications and their main
control messages in Table 2] which implement representa-
tive network functionalities. Topology Discovery dynam-
ically discovers switches and links between the switches and
the controller. Learning Switch learns the mappings be-
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tween MAC addresses and switch ports, and forwards pack-
ets according to the mappings, which makes SDN switches
act as layer-2 switches. ARP Proxy provides a MAC ad-
dress of a host to answer an ARP query for an IP ad-
dress. Traffic Monitor and Link Delay Monitor mon-
itor network throughput and link delays to provide neces-
sary information for other applications, respectively. Load
Balancer optimally schedules the workloads across multi-
ple computing resources. The above six applications are bun-
dled applications in most controllers, including Floodlight,
ONOS, and OpenDaylight. Thus, we choose them as typical
applications to evaluate the effectiveness of our method on
fingerprinting applications. The other four applications are
to enhance the security and privacy of SDN [27,141,42,[71]].
Topoguard fixes a vulnerability of topology poisoning that
widely exists in SDN controllers. DoS Detection applies
SDN based methods to detect the DoS attack that is one of
the most powerful attacks to disrupt a company or an or-
ganization. Anonymous Communication provides strong
anonymity guarantees for communications in SDN. Scan
Detection enables prominent traffic anomaly detection al-
gorithms with SDN to effectively identify malicious activi-
ties of hosts.

The types of control messages between these applications
are overlapped. However, the control traffic still has differ-
ent underlying patterns, such as packet length, contexts be-
tween packets, etc. We consider the applications as suitable
tests for deep learning both in the coverage of different ap-
plications and diversified control traffic. We write a shell
script to automatically combine different applications to run
on controllers. We leverage tcpdump on the controller’s host
to capture TCP packets with the 6653 port (OpenFlow port)
between the Floodlight controller and a switch. Note that we
only leverage the above method to collect control packets for
training deep learning models. In the attacking phase, since
it is almost impossible for an attacker to run tcpdump on the
controller to collect control packets, an attacker should col-
lect them using methods mentioned in Section[3.1] We save
each captured control traffic for one combination of SDN ap-
plications into a text file. We write a Python program to au-
tomatically label all control packets in each text file accord-
ing to the combination of the applications. Due to storage
constraints, we only save extracted metadata from traces of
control traffic. The metadata consists of the capture time of
packets, the directions of packets, and the lengths of packets.
We discard encrypted payloads of packets since they have lit-
tle value for an adversary. We remove TCP acknowledgment
(ACK) packets containing no control messages.

4.2 Dataset

Our dataset contains 6,000,000 control packets for each com-
bination of the 10 applications. Each type of control traffic
for one combination is saved in a separated text file. Totally,
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there are 6,144,000,000 control packets and 1024 text files.
Our current dataset only contains control packets between
one switch and the controller. Although collecting more con-
trol flows between multiple switches and the controller may
help to improve the accuracy of fingerprinting applications,
we aim to study the accuracy of fingerprinting in a general-
ized case since eavesdropping one control flow for an adver-
sary is easy.

5 Evaluation

In this section, we conduct comprehensive experiments to
verify the feasibility of fingerprinting SDN applications. We
first evaluate the accuracy, precision, and recall rate for 10
applications with three popular deep learning models. Then,
we explore how the effectiveness changes with different split
lengths of control traffic and different number of datasets.
Finally, we evaluate the training time for building a classifier
to fingerprint an SDN application.

5.1 Experiment Setup

We implement three models, i.e., SDAE, LSTM, and CNN,
for each of the 10 applications with Keras in Python. We
train each model on a server equipped with one Intel Xeon
Silver 4116 CPU (12 cores), 128 GB RAM, 1TB SSD, and
NVIDIA Quadro P4000 GPUs. To train a model for an appli-
cation, we divide all traces of mixed control traffic into two
classes: the first contains control traffic of the application
and the second contains no control traffic of the application.
We randomly select 60% samples from both the classes as
the training set, 20% samples as the test set, and 20% sam-
ples as the validation set. We initially define a sequence of
150 control packets as one sample. Moreover, we change the
length of one sample to explore how different split lengths
affect the effectiveness of fingerprinting SDN applications.

In order to accurately fingerprint SDN applications, hy-
perparameters of each model should be well tuned so that
models have the best classification performance and gener-
alize well to unseen traffic traces. Although conducting an
exhaustive grid search or other search algorithms is effec-
tive, it is computationally expensive. In our experiment, we
semi-automatically tune hyperparameters. We first conduct
a grid search with a small dataset, i.e., one-tenth of the orig-
inal dataset, to know the impacts of each hyperparameter.
We next manually adjust parameters with the original dataset
based on our experience and experimental results. We list
our final parameters in Appendix [A]

5.2 Effectiveness

Effectiveness with Different Models. We initially set the
split length of a sample as 150. Table [3| shows the accu-
racy, recall rate, and precision of fingerprinting SDN ap-
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Table 3: The Effectiveness of Fingerprinting SDN Applications with different DNN Models.

SDN SDAE LSTM CNN
Applications Accuracy Recall  Precision | Accuracy Recall  Precision | Accuracy Recall  Precision
Topology Discovery 90.8% 90.6% 94.1% 92.7% 95.7% 92.5% 94.2% 89.0% 99.3%
Learning Switch 96.4% 97.3% 99.6 % 98.3% 92.7% 88.8% 96.4% 90.3% 99.5%
ARP Proxy 87.1% 83.7% 83.9% 92.2% 95.7 % 88.1% 94.3% 92.8% 90.8 %
Traffic Monitor 94.4% 96.5 % 92.5% 92.8% 94.1% 91.7% 90.6% 93.0% 97.9 %
Link Delay Monitor 93.4% 92.9% 94.6% 93.2% 98.5% 84.5% 96.5% 99.3% 95.2%
TopoGuard 94.8% 94.8% 97.5% 95.4% 98.5% 83.5% 95.7% 92.0% 98.7 %
Load Balancer 93.1% 91.9% 87.2% 90.6% 93.1% 85.4% 97.1% 95.3% 97.3%
DoS Detection 89.6% 90.2% 88.7% 94.3% 90.0% 90.3% 97.8% 97.9% 96.3%
Anonymous Comm 98.2% 97.4% 97.5% 98.1% 94.9% 83.8% 94.7% 89.3% 92.6%
Scan Detection 95.6% 94.5% 87.7% 94.2% 96.6 % 94.2% 96.8 % 94.0% 98.7 %
Average Value 93.3% 93.0% 92.3% 94.2% 95.0% 88.3% 95.4% 93.3% 96.6%
Standard Deviation 3.2% 4.0% 5.0% 2.4% 2.5% 3.7% 2.0% 3.3% 2.8%

plications. For an application, different models perform
differently. For example, the accuracy for identifying ARP
Proxy is 87.1%, 92.2%, and 94.3% for SDAE, LSTM, and
CNN, respectively. The difference between the highest ac-
curacy and the lowest accuracy is 7.2%. The recall rate
and precision also change with different models. More-
over, SDAE performs best for Anonymous Communication
with a 98.2% accuracy, LSTM performs best for Learning
Switch with a 98.3% accuracy, and CNN performs best for
DoS Detection with a 97.8% accuracy. Our interpretation
is that different models have different capabilities to charac-
terize underlying patterns of applications. Besides, different
applications have unique patterns that may be more suitable
for extraction with some deep learning model.

Among the three models, LSTM performs the best for
the recall rate with an average value of 95.0%. However,
it achieves a low precision, i.e., 88.3% on average. Par-
ticularly, there is only an 83.8% precision for Anonymous
Communication. CNN performs the best both for the ac-
curacy and the precision, which achieves a 95.4% accuracy
and a 96.6% precision on average. 7 of the 10 applications
have the highest accuracy and 8 of the 10 applications have
the highest precision with CNN compared to the other two
models. Moreover, CNN achieves an acceptable recall rate
of 93.3% on average. SDAE achieves a 93.3% accuracy, a
93.0% recall rate, and a 92.3% precision on average. It per-
forms the worst for the accuracy and the recall rate.

We evaluate the stability of the three models on finger-
printing different applications with the standard deviation.
SDAE has the highest standard deviations of accuracy, recall
rate, and precision. LSTM has the lowest standard deviation
of recall rate and the moderate standard deviations of accu-
racy and precision. CNN outperforms the other two models
both in the standard deviations of accuracy and precision and
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has a moderate standard deviation of recall rate, which is the
most stable deep learning model.

Overall, by comparing the three models with each other,
we observe that CNN is the most effective and stable for
an adversary to fingerprint different SDN applications, es-
pecially in classification accuracy and precision.

Effectiveness with Different Split Lengths. The effective-
ness of fingerprinting SDN applications may change with
different lengths of samples. Thus, we divide sequences of
control packets into different lengths to train and test deep
neural networks. Because CNN performs best, we here ex-
plore its accuracy, recall rate, and precision of fingerprinting
applications with different lengths of samples.

Figure [6] shows the accuracy for fingerprinting differ-
ent applications with various split lengths. The results
show the accuracy of fingerprinting an application goes up
with the split length. When the split length is 50, fin-
gerprinting most applications achieves a low accuracy that
is less than 90%. Particularly, fingerprinting Traffic
Monitor only reaches an accuracy of 81.2%. When the
split length is increased to 250, the accuracy reaches more
than 95% for 9 of the 10 applications. The accuracy
of fingerprinting Learning Switch, Traffic Monitor,
Topoguard, and Anonymous Communication increases
by more than 10%. The reason is that more packets in a
sample give more underlying patterns. Although the accu-
racy goes up with the split length, the growth rate of the ac-
curacy gradually slows down. When we increase the split
length from 200 to 250, the accuracy is increased less than
1% for most applications and tends to converge.

Figure [/| shows the recall rate for fingerprinting different
applications with various split lengths. Similar to the ac-
curacy, the recall rate goes up with split lengths. When the
split length is increased from 50 to 150, the recall rate for fin-
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Figure 6: Accuracy of Fingerprinting SDN Applications with Different Split Lengths.
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Figure 7: Recall Rate of Fingerprinting SDN Applications with Different Split Lengths.

gerprinting most applications increases significantly. For in-
stance, the recall rate for fingerprinting Learning Switch
increases by 13.2%. There are two exceptions of SDN appli-
cations, i.e., Link Delay Monitor and DoS Detection.
The recall rate of fingerprinting the two applications is al-
ready more than 90% even with a small part of control traf-
fic, i.e., 50 packets, and improves slightly with more control
packets in a sample. When the split length is greater than
150, the recall rate stops significant improvement.

Figure [§] shows the precision for fingerprinting different
applications with various split lengths. The precision gradu-
ally increases with the split length, following a similar trend
like the accuracy and the recall rate. When the split length
is increased from 50 to 250, the precision for fingerprint-
ing Learning Switch improves the most, i.e., a 12.8% in-
crease, and the precision for fingerprinting DoS Detection
improves the least, i.e., a 5.3% increase. Moreover, the pre-
cision for fingerprinting most applications does not signifi-
cantly improve when the split length exceeds 150.

According to the above results, we conclude that an adver-
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sary can well fingerprint SDN applications with more than
150 encrypted control packets.

Effectiveness with Different Number of Applications. We
explore how the effectiveness of fingerprinting an applica-
tion changes with different number of applications running
on controllers. We train and test CNN models for finger-
printing ARP Proxy with five datasets El The five datasets
contain control traffic of at most 6, 7, 8, 9, and 10 SDN ap-
plications, respectively. As shown in Figure[] the accuracy,
recall rate, and precision slightly decrease with the number
of applications. When the number of applications increases
from six to ten, the accuracy drops by 1.9%, the recall rate
drops by 1.8%, and the precision drops by 2.0%. The results
demonstrate that the effectiveness of fingerprinting applica-
tions is not significantly affected by the number of applica-
tions. Our main conclusion here is that deep learning based
classifiers are capable of extracting stable patterns of control

2We also test the effectiveness of fingerprinting other applications with
different number of applications. The results are similar to those in Figure@
For simplicity and due to space constraints, we do not present the results.
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traffic, which allows an adversary to fingerprint SDN appli-
cations with a high success rate.

5.3 Performance

We evaluate the runtime for building a classifier to finger-
print an SDN application. As the runtime of classifiers with
different applications changes slightly (less than 1% differ-
ences), we list the average runtime for different applications
in Table 4] CNN runs fastest among the three models with
2.4 min runtime since it has fewer learnable parameters and
most computations in CNN happen in parallel. LSTM per-
forms the slowest due to its recurrent structure where the sub-
sequent processing steps depend on the previous ones.

Table 4: Runtime of Different DNN Models

DNN Models SDAE LSTM CNN
Average Runtime | 6.9 min | 350.1 min | 2.4 min
Loss 0.179 0.192 0.125

510 22nd International Symposium on Research in Attacks, Intrusions and Defenses

6 Discussion

In this section, we discuss the limitations of our current work
and possible countermeasures to mitigate the attack.

6.1 Limitations

Model Effectiveness on Traffic and Settings Changes.
Our experiments contain more than 10,000 real network
flows to train the deep learning models. Results show that
enough training data makes the models generalize well for
different flows containing different numbers and sizes of
packets. However, since deep learning models learn pat-
terns from data, they cannot classify unseen patterns that
training data does not contain. Thus, if network traffic or
setting of applications changes significantly, the classifica-
tion accuracy for fingerprinting certain applications may de-
crease unless we provide more diverse data to train mod-
els. According to our analysis, among the tested ten applica-
tions, the accuracy of fingerprinting four applications, i.e.,
Topology Discovery, Traffic Monitor, Link Delay
Monitor, and Anonymous Communication, is sensitive to
settings changes but not to traffic changes since they hardly
generate network events based on network traffic. For fin-
gerprinting the other six applications, the accuracy may de-
crease when either network traffic or settings significantly
change if there lacks enough training data to cover the
changed patterns.

Classifying SDN Applications with Control Traffic of
Multiple Switches. Our threat model currently assumes that
an adversary eavesdrops control traffic between one SDN
controller and one switch, which is common in practice. Al-
though we demonstrate many applications can be identified
with control traffic by deep learning models, we admit a few
applications cannot be well classified without further infor-
mation from control traffic between the controller and other
switches. It is because a few applications perform similar
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behaviors on one local switch but have different behaviors
on multiple switches. Therefore, if we assume a stronger
threat model, i.e., an adversary can eavesdrop control traffic
of multiple switches, more applications may be classified.

We elaborate this with an example. Considering the
two SDN applications: Learning Switch and Reactive
Routing. Any of them running on controllers receives a
PACKET_IN message to analyze a new flow and then installs
a flow rule into the ingress switch with a FLOW_MOD mes-
sage. The PACKET_IN messages are same between the two
applications for same flows and the FLOW_MOD messages be-
tween them can also be same if the two applications set same
match fields and actions in the flow rules. Thus, the patterns
of control traffic for the two applications are same in all as-
pects, such as packet lengths, relative orders of packets, di-
rections of packets, etc. An adversary cannot classify which
application running on the controller only with control traf-
fic between the controller and the ingress switch. However,
Reactive Routing paves arouting path for a flow in many
switches, i.e., installing multiple FLOW_MOD messages into
each switch along the path once receiving a PACKET_IN mes-
sage from the ingress switch. Instead, Learning Switch
performs per-hop forwarding, i.e., receiving a PACKET_IN
message from each switch and installing a FLOW_MOD mes-
sage into each corresponding switch. The patterns of the two
applications are different from the view of multiple switches.
Thus, it is possible for an adversary to classify the two ap-
plications by analyzing control traffic from many switches.
However, how to effectively leverage the context between
control traffic of multiple switches to fingerprint SDN appli-
cations is challengeable. We leave it as future work.

Fingerprinting SDN Applications that generate little con-
trol traffic. Although most applications running on con-
trollers continuously generate much control traffic, a few
applications only generate little control traffic at some time
when network administrators actively change the policy of
the applications. For example, REST Firewall [9] in the
Floodlight controller generates no control messages most of
the time. However, if a network administrator updates net-
work security policies by commanding the application with
REST API, the application will install flow rules with speci-
fied match fields and actions into switches to enable new se-
curity policies. The control traffic of the application is little
most of the time, which is difficult for deep learning models
to train effective classifiers to identify the application. More-
over, the patterns of control traffic highly depend on how
a network administrator command the application, which is
extremely mutable. Deep learning models may not extract
universal patterns to generalize well to identify the applica-
tion. One possible but ineffective solution is to manually
summarize useful patterns with enough SDN background
knowledge to identify them. Our future work will focus on
how to efficiently solve the problem.
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6.2 Possible Countermeasures

Reducing Differences for Control Traffic. To the best of
our knowledge, there are no public SDN defense systems
that can mitigate our attack. However, as an adversary fin-
gerprints SDN applications mainly based on different pat-
terns of control traffic, one straightforward mitigation is to
reduce the difference between control traffic of various ap-
plications. As we mentioned in Section [3.2] the main differ-
ence exists in the packet lengths, the packet directions, the
relative orders of packets, and the number of packets. Thus,
we may encapsulate control messages to normalize them. To
normalize the packet lengths, both controllers and switches
can reshape different packets by splitting one big packet into
several packets or adding padding in small packets so that
the packet lengths are equal. Since different packets cannot
be identified without knowing their real lengths, the relative
orders of packets are also hided. Moreover, to eliminate the
differences in the packet directions and the number of pack-
ets, controllers and switches can morph packets into fixed
bursts, i.e., breaking each traffic pattern into small bursts of
packets consisting of a fixed number of consecutive outgoing
packets followed by a fixed number of consecutive incom-
ing packets. By normalizing control packets, deep learning
models may thus identify SDN applications with a low ac-
curacy. However, one main disadvantage is that it requires
many modifications in switches, controllers, and the Open-
Flow protocol. Applying the countermeasure in real SDN
environments may take a long time and bring some costs.
Adding Adversarial Examples. Another interesting de-
fense strategy worthy of being further studied is to mislead
deep neural networks by deliberately generating adversarial
examples. They are specially crafted instances with small
and intentional feature perturbations to fool deep learning
models into false classifications or predictions. Previous
studies [40,/65] have demonstrated that adversarial examples
can successfully fool deep learning for computer vision and
pattern recognition. We may explore how an SDN applica-
tion can generate adversarial examples of control packets to
mislead fingerprinting SDN applications. For example, ARP
Proxy may periodically generate control packets that simu-
late the patterns of another application, such as Learning
Switch, to mislead the classification of deep learning mod-
els. It may effectively decrease the accuracy of fingerprinting
SDN applications. This defense requires to modify the SDN
applications.

7 Related Work

Fingerprinting and Probing in SDN. There are many pre-
vious studies on fingerprinting and probing information in
SDN. Shin et al. [52] designed a scanning tool to remotely
fingerprint networks that deploy SDN by measuring response
delays of probing packets. Kléti et al. [[32] provided a prob-
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ing technique to fingerprint aggregated flow rules by tim-
ing TCP setup. Cui et al. [21]] demonstrated that an adver-
sary can acquire knowledge on which flow rules installed
on switches by analyzing the packet-pair dispersion of data
packets. Achleitner et al. [12] presented SDNMap to recon-
struct the detailed composition of flow rules by actively send-
ing probing packets with different network protocols. Liu et
al. [39] developed a Markov model to infer if a target flow oc-
curred recently by sending optimized probing packets, in the
face of rule expiration and eviction. John et al. [57]] presented
a sophisticated attack to infer host communication patterns,
network access control and network monitoring policies by
timing processing delays of controllers. Azzouni et al. [|14]]
fingerprinted SDN controllers by timing timeouts of flow
rules as well as processing time of controllers. Although the
above studies effectively probe many types of information
in SDN, none of them show how to fingerprint SDN appli-
cations with control traffic. Our work reveals a new attack
vector in SDN.

Security Research in SDN. Recently, many SDN security
issues have been studied. They cover attacks and security
enhancements in all layers of SDN. In the application layer,
studies focus on cross-app poisoning [58]], malicious appli-
cations abusing [36]], and secure system for permission con-
trol of SDN applications [46,63]. A wide range of stud-
ies focus on the control layer security. Various attacks are
presented, including flooding controllers [53}60], disrupt-
ing control channels [18]], attacking information misman-
agement in SDN-datastores [23]], poisoning network typolo-
gies [27] and identifiers of network stack [30]], generating
harmful race conditions in controllers [66], and subverting
SDN controllers [48]. Extensive security enhancement sys-
tems [22}|30,|51L56L/60]] are designed to mitigate the attacks.
Other studies present attacks on data plane, such as low-rate
flow table overflow [[19]], attacking SDN switches with con-
trol plane reflection [69], and security policies violation [45]].
To fortify SDN data plane, intrusion detection and abnormal
data plane diagnose systems [38,/50] are provided. More-
over, automatic vulnerability discovery and security assess-
ment tools [29}35]] are designed to understand the possible
attack surface of SDN. In contrast to existing work, we show
a new threat to SDN and existing defense systems cannot
defend it.

Encrypted Network Traffic Analysis. Analyzing encrypted
network traffic to infer possible information based on packet
sizes, timing and other side channel leaks has been exten-
sively studied. Li et al. [37] fingerprinted personas from
WI-FI traffic by analyzing meta-data information on inter-
actions through HTTPS connections with machine learn-
ing. Chen et al. [20] showed detailed sensitive informa-
tion can be leaked out from encrypted network traffic of
web applications. Wright et al. [[64] designed an attack
to identify the phrases spoken within a call by analyzing
lengths of encrypted VoIP packets. Zhang et al. [70] pro-
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vided HoMonit to monitor smart home applications from en-
crypted wireless traffic. Moreover, a series of previous stud-
ies [25,/43,44,47,54,551|62] focuses on website fingerprint-
ing with the onion router (Tor) that preserves anonymity for
Internet users. They reveal which website Tor users are vis-
iting by analyzing Tor traffic with machine learning. How-
ever, all these studies make a single page assumption, i.e.,
the collected traffic always belongs to a single page from a
website and contains no mixed traffic from other pages. One
study [67]] relaxes the assumption and provides a multi-tab
website fingerprinting attack on partially mixed traffic. It
provides a split algorithm to extract a small initial chunk of
packets of the first page, which is not overlapped with the
packets of the following pages. Different from these studies,
we concentrate on fingerprinting what applications run on
SDN controllers via encrypted control traffic. Particularly,
control packets of different SDN applications are mixed in a
single TCP connection. Since all applications concurrently
send control messages to switches, control packets are tightly
coupled and totally mixed and thus can not be split using the
algorithm in the study [67]. We provide novel techniques
to accurately and efficiently fingerprint all applications from
mixed control traffic.

8 Conclusion

In this paper, we present a new attack on SDN that finger-
prints SDN applications with low-level and encrypted con-
trol traffic. It exploits different patterns of control traffic
caused by different behaviors of applications to infer what
applications run on SDN controllers. In order to characterize
the underlying patterns, we transform network packets into
the time series and apply deep learning to automatically learn
the patterns to fingerprint SDN applications. We divide the
task of fingerprinting multiple SDN applications into several
subtasks to improve the efficiency of training deep learning
models. We collect massive traces of control traffic from a
real SDN testbed. Extensive experiments demonstrate that
an adversary can effectively fingerprint SDN applications
with a high accuracy.
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Hyperparameters

Table 5: Hyperparameters of Different DNN Models
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DNN Models
SDAE CNN

Hyper ST™

optimizer RMSProp | Adam | RMSProp
learning rate 0.001 0.001 0.001
decay 0.0 0.0 0.0
batch size 64 64 64
5.10
number of layers 4 10 4
50..250 | 50..250
hidden layer units 100, 50, 20 -
dropout 0.1 0.5
activation tanh tanh
RMSProp

pretraining learning rate | 0.001

training epoch 5..10
input units
pretraining optimizer

100, 200

kernel size - 10

kernels

pool size - 2
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