
SATIN: A Secure and Trustworthy Asynchronous
Introspection on Multi-Core ARM Processors

Shengye Wan, Jianhua Sun
College of William and Mary

Williamsburg, VA

{swan, jsun01}.email.wm.edu

Kun Sun
George Mason University

Fairfax, VA

ksun3@gmu.edu

Ning Zhang
Washington University

St. Louis, MO

zhang.ning@wustl.edu

Qi Li
Tsinghua University

Beijing, China

qi.li@sz.tsinghua.edu.cn

Abstract—On ARM processors with TrustZone security exten-
sion, asynchronous introspection mechanisms have been devel-
oped in the secure world to detect security policy violations in
the normal world. These mechanisms provide security protection
via passively checking the normal world snapshot. However, since
previous secure world checking solutions require to suspend the
entire rich OS, asynchronous introspection has not been widely
adopted in the real world.

Given a multi-core ARM system that can execute the two
worlds simultaneously on different cores, secure world intro-
spection can check the rich OS without suspension. However,
we identify a new normal-world evasion attack that can defeat
the asynchronous introspection by removing the attacking traces
in parallel from one core when the security checking is per-
forming on another core. We perform a systematic study on this
attack and present its efficiency against existing asynchronous
introspection mechanisms. As the countermeasure, we propose a
secure and trustworthy asynchronous introspection mechanism
called SATIN, which can efficiently detect the evasion attacks by
increasing the attackers’ evasion time cost and decreasing the
defender’s execution time under a safe limit. We implement a
prototype on an ARM development board and the experimental
results show that SATIN can effectively prevent evasion attacks
on multi-core systems with a minor system overhead.

Index Terms—Asynchronous Introspection, Evasion Attack,
Trusted Execution Environment

I. INTRODUCTION

Introspection mechanisms have been developed and de-

ployed in a high privileged execution environment to pre-

vent or detect security policy violations in a low privileged

execution environment on the host machine [20]. In general,

introspection mechanisms can be classified into two categories:

synchronous introspection for attack prevention [7], [11], [12],

[15], [16], [36], [37] and asynchronous introspection for attack

detection [8], [14], [33], [37], [43], [48]. ARM TrustZone

technology is a system-wide security mechanism to provide

hardware-level isolation between two execution worlds that

share the CPU in a time-sliced fashion, where the secure

world has a higher privilege to access the system resources

of the normal world such as memory, CPU registers, and

peripherals, but not vice versa. To enhance the security of

mobile devices, a number of TrustZone-assisted introspection

mechanisms have been developed and deployed on millions of

mobile devices [7], [11], [12], [37], [43].

Synchronous introspection mechanisms focus on intercept-

ing and mediating security sensitive operations inline by the

high privileged execution environment to prevent security

policy violations in the low privileged execution environment.

For instance, synchronous mechanisms have been developed in

the virtual machine manager to ensure memory page protection

in virtual machines [15], [16], [36]. Similarly, Samsung’s

KNOX Real-time Kernel Protection (RKP) mechanism [7],

[37] relies on ARM TrustZone technique to intercept certain

privileged system functions in the normal world and screen

them through the secure world for inspection and approval

before being executed.

However, synchronous introspection mechanisms face two

main challenges. First, it has to hook up to all security

sensitive locations that are potentially exploitable to attackers.

Though it is possible to build up a near-complete list based

on recently discovered policy violations, it is hard to ensure

the completeness of such list. Second, certain implementation

bugs, such as write-what-where, allows an attacker to launch

data attacks bypassing the function checkpoints setup for

the synchronous introspection [26], [35]. Once an attacker

discovers any vulnerability of synchronous introspection, she

can deploy a persistent rootkit to maintain the root access to

the normal world OS (rich OS), steal data or mislead user be-

haviors without being detected by synchronous introspection.

Asynchronous introspection mechanisms can effectively de-

tect those persistent rootkits via analyzing attacking traces of

security policy violations from a snapshot of memory along

with CPU state information that is periodically or randomly

acquired from the low privileged execution environment (e.g.

the normal world). Besides simply checking the integrity of the

invariant kernel code, a number of proof of concept approaches

have been developed to provide a more fine-grained security

checking on dynamic kernel data structures after filling the

semantic gaps [8], [14], [33], [48]. Unlike the synchronous

introspection that requires to intercept all read/write transac-

tions on the target, asynchronous introspection conduct the

introspection based on the snapshot of the target, which

makes it more effective to introspect the target completely

and therefore detect a persistent attack.

One major limitation on applying asynchronous introspec-

tion mechanism in practice is that the introspection process

may introduce a large system overhead. Particularly, on single

core ARM processors, whenever the secure world is per-

forming the security checking, the entire rich OS will be

289

2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-0057-9/19/$31.00 ©2019 IEEE
DOI 10.1109/DSN.2019.00040

suspended during the memory acquisition and online memory

analysis process. Due to this poor usage experience on mobile

devices, TrustZone-based asynchronous introspection has not

been widely deployed or enabled.

Modern multi-core ARM processors creates new opportuni-

ties to deploy a practical asynchronous introspection based on

TrustZone without pausing the rich OS. Specifically, the ARM

multi-core architecture allows each core to enter its secure

world independently, so the rich OS and the secure OS can run

in parallel [9], [23], [28]. It is now feasible to make one core

or all cores taking turns to perform the asynchronous intro-

spection tasks while leaving other cores to continue the normal

world’s operations. For example, Samsung KNOX includes a

Periodic Kernel Measurement (PKM) mechanism in the secure

world to perform periodic asynchronous introspection on a

specific core [37].

In this paper, we reveal a new type of evasion attack

that can defeat the asynchronous introspection on multi-core

systems by removing the attacking traces concurrently from

one core while the security checking is executing on another.

Evasion attacks target at defeating asynchronous introspection

by predicting precisely the time of next security check and

thus removing all attacking evidence to avoid detection [37],

[48]. However, on multi-core mobile devices that can run both

normal world and secure world concurrently, besides removing

the attacking traces before security check, an attacker can also

hide its attacking trace right after the start of introspection but

before it has the opportunity to examine any malicious bytes.

We name this type of evasion attacks as TZ-Evader.

There are two main challenges to be solved when designing

a TZ-Evader attack. First, the malicious code running in the

normal world needs to know if the asynchronous introspec-

tion is running on any core’s secure world; however, the

ARM TrustZone architecture protects the secure world running

information from being accessed by the normal world. To

solve this challenge, we propose to utilize the CPU core’s

availability as the side channel information to decide if the

introspection is running on any core. We develop a user-

level prober to stealthily probe the current state of each

core. Second, when one core enters the secure world and

begins to run the inspection, the malicious normal world

needs to detect the core’s state changes at an earliest time

in order to maximize its evasion capability. To solve this

challenge, we propose a kernel-level prober that can accurately

monitor the running state changes of all cores. There are two

implementation options for deploying the kernel-level prober,

either by intercepting the timer interrupt to inject the prober

in the rich OS or by manipulating the real-time scheduler of

the Linux kernel to add the prober as a high priority process.

We implement a proof-of-concept TZ-Evader attack by

integrating the kernel-level prober with traditional persistent

rootkit on the ARM Juno r1 development board [5]. We eval-

uate its effectiveness against the state-of-the-art asynchronous

introspection mechanisms, and the experimental results show

the new TZ-Evader attack can accurately detect the running

of asynchronous introspection and thus conduct a successful

evasion attack.

With a deep understanding of the TZ-Evader attack, we

propose a secure and trustworthy asynchronous introspection

solution called SATIN in the secure world to defeat the TZ-

Evader attack. The basic idea is to minimize the running time

of each introspection and maximize the probing delay of TZ-

Evader at the same time. We propose a number of techniques

including random wake-up time, random introspection area,

and random CPU affinity to ensure that the asynchronous

introspection is always completed before TZ-Evader can hide

any attacking traces. We implement a prototype of SATIN

on the ARM Juno r1 development board and the experimental

results show that it can effectively detect the TZ-Evader attacks

with a minor system overhead.

In summary, we make the following contributions.

1) we discover a new evasion attack called TZ-Evader

against asynchronous inspection on multi-core ARM

processors. The attack utilizes the side channel infor-

mation to infer if any core is running in the secure

world and then begins to clean the attacking traces

simultaneously on other cores that run in the normal

world.

2) We develop a high-accurate probing technique called

KProber for the normal world to fast probe the running

state of all cores. Based on KProber, we implement

a proof-of-concept TZ-Evader, which can defeat exist-

ing TrustZone-Based asynchronous introspection mech-

anisms.

3) We propose a secure and trustworthy asynchronous

introspection mechanism called SATIN to protect mobile

devices against TZ-Evader. It wins the race condition

over the attacker by minimizing the running time of each

introspection round and maximizing the probing delay

of TZ-Evader.

II. BACKGROUND

A. ARMv8-A Security Model

The ARMv8-A architecture is the latest 64/32-bit ARM

architecture, which supports execution instructions with 64-

bit registers and remains backward compatible with the 32-bit

ARMv7 architecture. In the AArch64 security model, each

instruction is executed at one of the four Exception Levels:

EL0, EL1, EL2, and EL3, as shown in Figure 1. EL3 is the

highest privilege level that only contains a Secure Monitor for

controlling the context switch between the secure world and

the normal world. In the normal world, the user applications

run at EL0, the guest OSes run at EL1, and the hypervisor

runs at EL2. In the secure world, the secure applications run

in the S-EL0 level, and the secure OS runs in the S-EL1 level.

There is no S-EL2 level, so the secure world does not support a

hypervisor layer. The asynchronous introspection module can

be implemented at either S-EL1 or S-EL0 level.

B. Preemptive/Non-preemptive Secure Mode

The ARM interrupt management framework is responsible

for configuring the interrupt routing behavior [3]. There are

290

Fig. 1: ARMv8-A Security Model [1]

two generic requirements. First, it should be guaranteed to

route secure interrupts to be handled by the secure world,

even when the current execution is in the normal world.

Thus, it protects secure interrupts against potential intervention

from non-secure software. Second, it should be able to route

the non-secure interrupts to the normal world when current

execution is in the secure world. When the non-secure interrupt

is configured to be routed to EL3, the secure monitor in

EL3 can save the state of software in secure world before

handing the interrupt to non-secure software. In this case, the

secure world is preemptive. When the non-secure interrupt is

configured to be routed to the S-EL1 or S-EL0, the secure

software can either hand the interrupt to the non-secure

software in a preemptive mode, or ignore the interrupt until

its running task completes in a non-preemptive secure mode.

OP-TEE OS [28] is an open-source secure operating system

that supports preemptive secure world.

III. EVASION ATTACKS ON MULTI-CORE PROCESSORS

A. Assumptions and Threat Model
We assume the secure world can be trusted and all the

introspection components in the secure world are secure from

attacks in the normal world. The asynchronous introspection

can run randomly on any core at any time, and it cannot be

intercepted by the normal world. We assume the asynchronous

introspection does not suspend the rich OS on all cores;

otherwise, it will face the same poor user experience problem

as that on single-core processors. We assume the rich OS can

be compromised and the attacker can bypass the existing syn-

chronous introspection mechanisms to gain root privilege [26],

[35] (see discussion in section VII-A). We assume the attack is

an Advanced Persistent Threat (APT), which aims to maintain

its presence on the target and makes various effort to remain

undetected. For example, a key-logger may collect all user

inputs on the keyboard by intercepting a system interrupt,

while the hijacking is detectable to the introspection. In this

case, whenever the introspection is running, the key-logger

should stop the attack and clean its attack trace to camouflage

its existence; Meanwhile, for all the other time, it remains in

the attacking phase.

B. New Attack Surface
On multi-core ARM processors, attackers may defeat the

existing asynchronous introspection by satisfying two require-

ments. First, the malicious code in the normal world can

detect if one core is entering the secure world. Second, before

the core in the secure world can access the attacking traces,

the malicious code running on other cores can remove the

attacking traces.

1) Probing CPU Core’s Running State: Since the normal

world cannot directly access any secure world information, we

propose to utilize the availability of the shared CPU cores as

a side channel information to infer the running state of each

core. The main idea is that after the secure world holds one

core to perform the introspection, the normal world cannot

use that core to run any process. A user-level prober process

can be used to conduct this probing task. To trace when the

normal world loses the control on a CPU core, the prober

process assigns each core with a child-thread, which keeps

reporting back the corresponding core’s availability. Since the

rich OS kernel may migrate one thread task to other cores,

especially when one core is paused, we fix the CPU affinity of

each thread. Thus, when one core enters the secure world, the

attached thread will be paused and cannot be migrated to other

cores by the OS scheduler. When one thread is paused, the

prober process can detect that the corresponding core enters

the secure world.

User-Level
Prober

Any�
time_x�

< (time_i -�
Tns_threshold)

2. Thread
start

� ...

Thread_i
(Core_i)

� ...

Y

1. Create threads

Thread_0
(Core_0)

Time
Comparer

Time
Reporter

3. Report
core_x
enters

the Secure�
World

Thread_n
(Core_n)

sleep N

Fig. 2: User-level Multi-thread Prober

Figure 2 shows the multi-thread design of the user-level

prober. For a device with n cores, we start a process with

n threads, and each thread’s CPU affinity is fixed to its

corresponding core. Each thread has two components: Time
Reporter and Time Comparer. On core i, the Time Reporter

obtains the latest time time i from a shared timer among

all CPU cores and then reports the time into a buffer that

is readable to all threads. After that, the Time Comparer

compares core i’s time i with all other cores’ latest reported

times.

Since each thread reports its latest time independently, even

if we can start the Time Reporters on all cores simultaneously,

there exists a time difference when reading those reported

time buffers and comparing their values. Meanwhile, since

the kernel scheduler manages to provide the “fairness” to

all threads, even though we cannot control all threads in a

completely synchronized manner, each thread can be executed

within a threshold, and the time differences between any two

threads have an upper limit. We define this upper limit as

Tns threshold.

291

Ask one�core�for
introspection at

t_start

Ts_switch

S-EL1�starts the
introspection

Tns_delay =�Tns_sched + Tns_threshold

Realize�one�core�
enters�secure world

M * Tns_1byte

Recover�the malicious
byte as�benign

Secure World

Normal World

Touches the
first�byte of M bytes

Timeline

S * Ts_1byte

Fig. 3: Race Condition Between Two Worlds on Multi-Core System

If thread i finds any core x’s latest time x is earlier

than its reporting time and the latency is larger than the

threshold, namely, time i > (time x + Tns threshold), then

this thread reports that core x switches to the secure world.

To remain stealthy, we can afford to have the threads sleep

for a time interval. We assume the threads can be sched-

uled with the average frequency fns sched, so between any

two consecutive rounds of Time Comparer, there is a delay

Tns sched = 1/fns sched. Finally, the prober needs time

Tns delay = Tns sched + Tns threshold to detect that one core

enters the secure world.

We implement and evaluate this user-level prober on the

ARM Juno development board (see Section IV-A). When

running one round of probing every 8 seconds, we found

the Tns delay is smaller than 5.97× 10−3 s while the average

time for one core to conduct a kernel integrity check is

8.04× 10−2 s. We can see the prober is capable of detecting

the running of a typical TrustZone-based kernel integrity

checking. Since each step of the prober requires no modifi-

cation with OS kernel privilege, it is stealthy and useful to

check if the secure world is ever entered.

2) Race Condition on Multi-core Processors: One state-

of-the-art defense mechanism against evasion attacks is to

trigger the security checking randomly. However, on multi-

core systems, we observe that as long as the normal world is

not frozen on all cores, there exist a race condition between

the normal world to remove the attacking traces and the

secure world to detect the attacking traces. We assume the

introspection will check N bytes of critical memory and the

normal world needs to clean M bytes of attacking traces.

We formalize the race condition between the evasion attacks

and the asynchronous introspection. We suppose the secure

world requests to start the asynchronous introspection at the

time moment t start. To switch one core to the secure world

for conducting introspection, the ARM processor needs to

save the normal world context of this core and then switch

to the secure world. We define this context switching period

as Ts switch. Thus, the moment that the secure world starts

the integrity checking can be as early as t start+ Ts switch.

We define the time for the secure world to inspect one byte

as Ts 1byte. Since the secure world assumes all N bytes may

be vulnerable while it does not know exactly what bytes are

modified by the attacker, it may check S bytes before it

touches any malicious byte where 0 ≤ S ≤ N−M . Therefore,

the introspection cannot find any malicious bytes before the

time moment t start+ Ts switch + S ∗ Ts 1byte.

From the attacker’s point of view, since she wants to

attack the system with the longest duration (e.g., to collect

inputted password), she would only stop the attack and hide the

attacking trace if she believes there is an introspection. If it can

predict the t start, it can easily hide before the introspection

starts. When the t start is unknown or unpredictable, the

attacker need to detect it by probing the secure world’s state.

We define the probing delay for the attacker to notice one core

entering the secure world as Tns delay . Assume the time for the

attacker to recover one malicious byte is Tns 1byte. The total

recovering time for the attacker is Tns recover = M∗Tns 1byte.

Then after the moment t start + Tns delay + Tns recover,

the secure world cannot detect the malicious modification.

The timing relationship between the two worlds is shown in

Figure 3. Finally, for the attacker that is able to escape from

the introspection, the condition 1 should be satisfied :

(Ts switch + S ∗ Ts 1byte) > (Tns delay + Tns recover) (1)

We can see that the key element for evasion attacks to

win the race condition is to minimize the probing delay

Tns delay . Though the user-level prober shows the capability

of understanding the secure world state stealthily, its probing

stability and accuracy cannot be guaranteed. Particularly, when

one core is scheduled with several threads that have the

same or higher schedule priority than the probing thread,

the prober’s Tns sched is increased. To improve the probing

accuracy, we should minimize the detection delay. In the next

section, we present a new evasion attack called TZ-Evader

based on a more accurate kernel-level prober.

C. TZ-Evader

TZ-Evader includes two components: a kernel-level attack

module that conducts the persistent attack on the OS and

removes the attacking trace accordingly; a fine-grained kernel-

level prober module that can accurately and reliably monitor

the running state of each core. The kernel-level prober also

contains two components Time Reporter and Time Comparer,

the same as the user-level prober. After obtaining the root

privilege in rich OS, the prober module is loaded. If the prober

can receive the time reported from all CPU cores, TZ-Evader

believes there is no introspection in the secure world and keeps

the attack active on the rich OS. Once the prober module

292

reports that one core may be switched to the secure world, TZ-

Evader begins to remove its attacking trace. We provide two

implementation options for the kernel-level prober. The first

option KProber-I is based on intercepting the timer interrupt

to inject the prober in the rich OS,and the second option

KProber-II works by manipulating the real-time scheduler of

the Linux kernel to add the prober as a high priority process

to be scheduled.

1) KProber-I: On ARM processors, each core has its own

timers to generate time interrupts. The Time Reporter and

Time Comparer are injected into the normal world timer

interrupt handler, so as to ensure the prober being executed

with the same frequency as the timer interrupts. After this hi-

jacking, for any incoming timer interrupt to core i, the interrupt

handler updates the time i into its corresponding buffer i
and compares it with other n − 1 cores’ time reports before

resuming the normal timer interrupt handler. Linux kernel

is typically configured as the CONFIG NO HZ IDLE
mode, which means when the core is not in the IDLE state, the

per-core timer raises the timer interrupt for scheduling-clock

ticks periodically with the frequency of HZ. For most versions

of the Linux kernel, 100 ≤ HZ ≤ 1000 [13]. To avoid

any core entering the idle mode, KProber-I keeps running

a user-level multi-threads program on each core. KProber-I

can guarantee to work with a frequency no less than HZ
on any core, no matter how many tasks are running on that

CPU core. Though this implementation option can achieve

the highest time accuracy from the rich OS perspective, it

requires to modify the timer interrupt handler, which may

introduce extra attacking trace for the defender to detect. In

section III-C2, we present another implementation without

modifying any kernel static area. Moreover, since there are

many potentially unknown mechanisms to manipulate the

handler, the defender has to scan the entire kernel for detecting

all potential preparation traces, which gives KProber-I a larger

chance to be recovered as we evaluated in Section IV-C.

2) KProber-II: This prober utilizes the Linux’s real-time

(RT) scheduler to ensure a reliable execution of Time Reporter

and Time Comparer. According to the Linux kernel design,

RT scheduler has higher scheduling priority than the default

Linux CFS scheduler, which is responsible for scheduling most

of Linux application threads. Meanwhile, RT scheduler can

be used to schedule tasks with higher priority. Therefore, by

setting the prober with the highest priority of RT scheduler,

KProber-II can protect the reliable execution of Time Reporter

and Time Comparer from being affected by either CFS-

scheduled threads or low priority RT-scheduled threads.

Theoretically speaking, the timer-interrupt based prober is

more stable than the RT scheduler based prober, since the

frequency of the RT scheduler relies on the timer interrupt.

However, injecting a prober into the interrupt handler demands

more engineering efforts than simply increasing the priority of

the attacking threads using the real-time scheduler. We present

more implementation details in Section IV-A1.

IV. TZ-EVADER IMPLEMENTATION AND EVALUATION

A. TZ-Evader Implementation

We develop a prototype of TZ-Evader on ARM Juno r1

development board [4], which is featured with the ARM

big.LITTLE technology that consists of a 4-core Cortex-

A53 “LITTLE” processor for maximum power efficiency and

a 2-core Cortex-A57 “big” processor to achieve maximum

computation performance. The secure monitor running in EL3

is provided by ARM trusted firmware (ARM-TF), and the

secure world OS running in S-EL1 is modified based on

the Test Secure Payload (TSP) of ARM-TF [3]. We modify

the secure timer interrupt handler in the TSP to perform the

integrity check over the normal world. The normal world runs

OpenEmbedded LAMP OS with kernel version lsk-4.4-armlt

in EL1, which is downloaded using the script from Juno Wiki

of ARM Community [5].

1) Kernel-Level Prober Implementation: We deploy two

types of KProber to probe a specific core or a randomly chosen

core. To probe a specific core’s running state, we fix one thread

of Time Reporter on the targeted core and fix another thread

containing Time Reporter and Time Comparer on another core.

To probe a random CPU core, we assign each core with one

thread that contains Time Reporter and Time Comparer.

To implement the timer interrupt based KProber-I, one

key technical issue is to hijack the time interrupt handler.

In ARMv8-A architecture, the address of the original timer

interrupt address is saved in the IRQ Exception Vector, which

can be located in the AArch64 Exception Vector Table [2]. The

table’s starting address is saved in the Vector Based Address

Registers V BAR ELi(1 ≤ i ≤ 3). After locating the timer

interrupt, we modify its corresponding table entry to redirect

it to our hijacking code.

For the real-time scheduler based KProber-II, we use

the function pthread setschedparam() to schedule the

targeted threads with the real-time scheduler. We use

the rt-scheduler SCHED FIFO with the priority pa-

rameter sched get priority max(SCHED FIFO) for all

KProber-II’s threads. After investigating the relationship be-

tween thread sleeping and CPU utilization, we set the sleep

time Tsleep = 2× 10−4 s and we assume the Tns sched =
Tsleep. In the following experiments, we implement Time

Reporter with KProber-I and Time Comparer with KProber-

II to demonstrate that both techniques can achieve reliable

probing results.

2) Sample Kernel-Level Attack: To facilitate the evaluation

of TZ-Evader, we implement a kernel-level attack that can

hijack the GETTID system call. Successful system hijacking

requires modifying an entry of the system call table, and this

attack modifies one 8-bytes address of the system call table.

Since the system call table is defined as text kernel data,

TrustZone-based introspection can detect the GETTID system

call is hijacked if the introspection scans and detects any of

these 8 bytes is modified. Note there are many other kernel

level attacking vectors, we just use GETTID hijacking attack

as an example to study the evasion attacks.

293

B. Attack Evaluation

1) Introspection Time Delay: We first evaluate the time

delay of the introspection. As we mentioned in the Equation 1,

TrustZone-based asynchronous introspection suffers two major

delays: Ts switch and s ∗ Ts 1byte. To evaluate Ts switch, we

execute the context switching function of Test Secure Payload

Dispatcher 50 times on one A53 core and one A57 core. The

result shows for a secure timer interrupt raised at t start, the

time for the dispatcher to pause the normal world and jump

to the related timer interrupt on the A53 core or A57 core are

similar, ranging from 2.38× 10−6 s to 3.60× 10−6 s.
Then we evaluate Ts 1byte regarding two different introspec-

tion techniques. Traditional hardware-assisted asynchronous

kernel introspection takes a snapshot of the kernel [47], [48]

and then analyzes the memory copy. Since this copy remains

inaccessible by the attacker, the analysis steps after taking

the snapshot are not vulnerable to the TOCTTOU attack.

Meanwhile, since the secure world and the normal world

share the system hardware, TrustZone-based introspection can

directly read the normal world OS’ kernel from the secure

world. After reading the kernel data, it can hash the data and

compare the hash value to a pre-calculated authorized value.

In our experiment, we measure the time for the secure world

to take the snapshot and hash the kernel data. We use djb2 [31]

as the hash function. Each measurement is repeated 50 times.

Table I shows that directly hashing the kernel’s memory is

more efficient than capturing and hashing the snapshot. In

addition, it consumes less memory than the snapshot approach.

Therefore, directly hashing the memory is better than taking

snapshot when the asynchronous introspection targets at the

static kernel area. We also find that it takes less time to conduct

the introspection on the A57 core than the A53 core, since A57

core is more powerful than the A53 core.

TABLE I: Secure World Introspection Time

Core-Time Hash 1-Byte Snapshot 1-byte
A53-Average 1.07× 10−8 s 1.08× 10−8 s

A53-Max 1.14× 10−8 s 1.57× 10−8 s
A53-Min 9.23× 10−9 s 9.24× 10−9 s

A57-Average 6.71× 10−9 s 6.75× 10−9 s
A57-Max 7.50× 10−9 s 7.83× 10−9 s
A57-Min 6.67× 10−9 s 6.67× 10−9 s

2) Attack Time Delay: We evaluate normal world attack

time delay in two aspects, where Tns recover is introduced

by the the kernel-level attack module, and Tns threshold is

introduced by the prober module. We repeat the measurement

of the recovery time Tns recover 50 times on one A53 core and

one A57 core. For the A53 core, the average recovering time is

5.80× 10−3 s. For the A57 core, the average recovering time

is 4.96× 10−3 s.
Then we present the prober’s time delay Tns threshold when

KProber is probing all cores simultaneously. As the prober

execution involves all available cores, we present the prober’s

time delay Tns threshold regardless of core types. To observe

the variation of the threshold, we execute the KProber with

different probing periods. For each probing period, we choose

the largest difference calculated by the Time Comparer as

the threshold, and we repeat the measurement 50 times.

We present the average threshold, maximum threshold, and

minimum threshold of the 50 rounds for each time period in

Table II.

TABLE II: Probing Threshold on Multi-Core

Probing Period Average Max Min
8 s 2.61× 10−4 s 7.76× 10−4 s 1.07× 10−4 s
16 s 3.54× 10−4 s 1.38× 10−3 s 1.31× 10−4 s
30 s 4.21× 10−4 s 8.99× 10−4 s 2.59× 10−4 s
120 s 5.26× 10−4 s 9.49× 10−4 s 3.18× 10−4 s
300 s 6.61× 10−4 s 1.77× 10−3 s 4.18× 10−4 s

Based on the experiment results, we find that the average

threshold becomes larger along with a longer probing period

and the maximum threshold is around 1.8× 10−3 s. To further

understand the variation of the threshold, we investigate the

reported time of each thread and identify that, in some

rare cases, Time Comparer on core i may get the time x
of the core x with an abnormal large delay, which is up

to 1.3× 10−3 s. This cross-core reading delay leads to the

large threshold. Meanwhile, a longer probing period increases

the occurrence of those rare cases, so the average threshold

increases too.

Fig. 4: KProber Probing Threshold Stability

To present the stability of KProber, we show the variation

of the thresholds with different probing periods in Figure 4.

We can see that even though the KProber’s average probing

threshold increases with the probing period, the upper whiskers

of the thresholds only go up slightly, and only few extreme

large outliers are introduced for probing period 300 s, which

go over 1× 10−3 s.
Finally, we also observe that setting introspection with a

fixed CPU affinity is easier to be probed than using all cores

randomly. As we mentioned in Section IV-A1, we also evaluate

the case to use KProber for figuring out one single core’s

availability. We conduct the experiment with the same setting

as presented above. According to our experiment result, the

average thresholds to probe the single core only equal to ∼
1/4 of the presented threshold for probing all cores, for all

five probing periods we evaluated. This means the more cores

KProber needs to probe, the larger probing threshold it suffers.

294

C. Race Condition Analysis

Based on the experiment results, we have following obser-

vations on the race condition between the normal world and

the secure world:

1) The switch delays Ts switch for the A53 core and A57

core are similar.

2) The secure world can use more powerful CPU core (i.e.,

A57 core) for introspection to achieve a shorter Ts 1byte.

3) The secure world is easier to be probed if it’s CPU

affinity is predictable to the normal world.

4) The timing bottleneck of TZ-Evader is the time period

for recovering its attacking trace Tns recover.

According to Equation 1, we know the attack can finish its

cleaning task after the secure world inspects S memory bytes,

where:

S >
Tns sched + Tns threshold + Tns recover − Ts switch

Ts 1byte
(2)

Now we consider the worst case for the TZ-Evader: the

introspection starts on one A57 core while the TZ-Evader

uses on one A53 core to remove its attacking trace. In

Section IV-B1, we have Ts switch ≤ 3.60× 10−6 s. Also,

the secure world can inspect the kernel data with the max-

imum speed Ts 1byte = 6.67× 10−9 s. The attacker recovers

its attacking trace as the lowest efficiency Tns recover =
6.13× 10−3 s, and Tns sched = 2× 10−4 s. In Section IV-B2,

we have for the worst case of TZ-Evader, Tns threshold ≤
1.80× 10−3 s. By applying the experimental data into the

above Equation 2, we have S ≤ 1218351 bytes. Sup-

posing the attack bytes appears randomly in the kernel and

the introspection checks the entire OS kernel whose size

is 11916240 bytes, nearly 1 − 1218351
11916240 ≈ 90% of the

kernel space is not protected by existing TrustZone-based

asynchronous introspection. Therefore, as long as both kernel

attack module and prober module do not locate in the 10%
scanned area, the system suffers TZ-Evader attack.

V. SATIN: SECURE ASYNCHRONOUS INTROSPECTION

We propose a secure and trustworthy TrustZone-based asyn-

chronous introspection mechanism named SATIN that can

practically inspect rich OS and effectively defeat TZ-Evader

attacks. We first discuss two major challenges on developing

the secure asynchronous introspection and then present the

detailed design of the proposed mechanism. Figure 5 shows

the architecture of SATIN, which is implemented in the

secure world. It consists of two major components, where

the integrity checking module performs the integrity checking

on rich OS using a divide-and-conquer method to control the

checking time of each round and the self activation module is

responsible for waking up the secure world with the help of

a secure timer and ensuring that the entrance cannot be either

predicted or quickly probed by the normal world.

A. Asynchronous Introspection Challenges

We identify two main challenges on developing secure

asynchronous introspection mechanisms against TZ-Evader.

Secure
Monitor

EL3

EL2

EL1
S-EL1

Self
Activation
Module

Integrity
Checking
Module

Normal
World

OS Kernel

Secure
Timer

Interrupt
Controller

1. Raise
TImer

Interrupt

5. Configure
secure timer

for next awake

2. Distribute
Interrupt

3. Save NS Context

4. Restore
S Context

and
Switch to S-EL1

Fig. 5: SATIN Architecture

1) Challenge 1: Performance vs. Detection Accuracy:
On single core processors, the TrustZone-based introspection

introduces unacceptable overhead as the introspection has to

suspend the rich OS during the security checking process. The

pausing issue leads to poor user experience. For example, a

music song played in the normal world becomes incoherent

when the CPU enters the secure world. Similarly, on the multi-

core processors, we cannot frequently freeze all cores even for

a small period of time. For instance, Azab et al. [8] propose an

introspection mechanism that requires to freeze all CPU cores

on the server every 8 or 16 seconds.It becomes one of the

biggest obstacles for asynchronous introspection mechanisms

to be widely adopted and deployed, though a better detection

accuracy can be achieved by freezing all cores. Meanwhile,

even a multi-core platform can execute the introspection and

other tasks simultaneously, the execution of the secure world

still possesses some shared resources such as the CPU core.

It is not well studied how much overhead is introduced by

running the introspection in parallel to the rich OS.

2) Challenge 2: Evasion Attack: It is a challenge to defend

against evasion attack when designing asynchronous introspec-

tion mechanisms [20]. If the attacker can escape ahead of

the introspection by predicting or probing the execution of

the asynchronous introspection, then the introspection result

cannot be trusted [43], [45]. On single core processors, random

checking is an effective scheme to defeat evasion attacks.

However, on multi-core ARM processors, TZ-Evader can even

escape from the random checking on any random core. It

is critical to develop a secure asynchronous introspection

mechanism to defeat the new evasion attacks.

B. Integrity Checking Module

To improve the detection rate, we propose to reduce the

introspection time for each round by dividing the entire OS

kernel into smaller areas and taking turns to check one area in

each round. Therefore, it can guarantee to finish one round of

security checking right before the malicious normal world can

probe it but have not chance to remove any attacking traces.

The integrity checking module prepares the hash value of each

small area’s benign status during booting stage. Then for each

295

round of wake-up, it scans one small area and compares the

hash value with the pre-calculated benign one. If the integrity

checking module finds any abnormal small area, it can raise an

alarm to the server side or the device user. To ensure that the

malware cannot remove its traces before we finish checking on

one small area, the size of each small area should be smaller

than (Tns delay +Tns recover −Ts switch)/Ts 1byte bytes. We

develop a pseudo-random method to select the next small area

for introspection. Suppose the set setarea =
⋃m−1

i=0 area i
contains all the areas of the OS kernel, and each area i
satisfies the above size condition. When the secure world starts

one round of the introspection, the module randomly picks

one area area x from setarea and then applies setarea =
setarea − area x. If setarea == NULL, then SATIN resets

setarea = {area 0, ..., area (m− 1)}.

Also, the integrity checking module needs to guarantee

its execution is not interrupted by other non-secure parties.

According to the latest ARM interrupt routing model [3],

the normal world interrupt signal is possible to interrupt

the execution of secure world. To prevent the normal world

from using interrupts to interfere in the introspection process,

SATIN needs to block all interrupts during each round of the

introspection. We propose to deploy the integrity checking

module into the secure timer interrupt handler, and then set

EL3 to not trap the normal world interrupt by configuring

SCR EL3.IRQ = 0. With this setting, even if the normal

world interrupt signal can arrives the secure world, their

priorities are lower than the integrity checking module.

C. Self Activation Module

The self activation module is designed to make sure the

secure world can invoke the integrity checking module anytime

without the help of the normal world. It relies on a secure timer

that the normal world cannot access. Each TrustZone-enabled

core has an individual secure timer that can only be read or

written with the secure world privilege. During the booting

time, the self activation module is invoked once on each core

to write the next awake time into the secure timer register.

After the trusted booting process, when the timer condition

meets, the timer raises an interrupt for the secure world and

the secure monitor switches the core from the normal world

to the secure world to handle this interrupt. By configuring

the secure timer, we can activate the secure world without

involving the normal world. Thus, we can prevent the normal

world from disturbing the invocation of introspection. When

one core enters the secure world via the secure timer interrupt,

SATIN first performs the introspection on one small area and

then sets the awake time for the next round of introspection.

The self activation module decides the next awake time by

time x, which is set to a base period time tp (e.g., 8s, 16s,

etc.) plus a random deviation td (e.g., a random time from

−tp to tp). By applying the random deviation with the next

awake time, the interval between two consecutive rounds of

introspection is among [0, 2∗ tp], which means at any moment

the introspection could start to scan and the attacker has to

keep probing all cores. In addition, the random deviation can

Integrity
Checking
Module

Self
Activation
Module

Core_0

Integrity
Checking
Module

Self
Activation
Module

Core_(n-1)

Self
Activation
Module

Integrity
Checking
Module

Secure Timer Interrupt

Back to Normal World

Core_i

time_0

time_1

...

...

time_(n-1)

Shared
Data

time_(n-2)

Wake-Up
Time Queue

area_0
(checked)

...

area_x

...

area_(m-1)

Kernel
Area
Set

n-1

0

...

...

n-2

i

assign
ment

random

get�assigned time
for next awake

Fig. 6: Multi-Core Collaboration of SATIN

effectively minimize the exposure of any recognized patterns

on the invocation of the asynchronous introspection to the

normal OS. We set tp = Tgoal/m, where Tgoal is the time

period to guarantee that all the target areas can be scanned at

least once.

D. Multi-Core Collaboration

To increase the checking accuracy, we propose to choose a

random core for conducting the introspection task. This design

choice is based on the observation that if only one core is used

for asynchronous introspection, the malicious normal world

can achieve a better probing accuracy than that when all cores

are randomly chosen to conduct introspection, as mentioned

in Section IV-B2.

Figure 6 illustrates the collaborative introspection of SATIN

on the multi-core architecture. When any core i wakes up for

the introspection, it randomly takes one kernel area from the

shared Kernel Area Set setarea and inspects this area. Later,

other cores are not going to inspect this area repeatedly since

core i removes the area it chooses from the set. If there is

no more area available, the set is refilled with all areas again.

Next, core i obtains the next wake-up time from a wake-up

time queue and configures it’s secure timer accordingly, where

the wake-up time queue is responsible to coordinate all cores

that wake up in a random sequence.

Coordinating all cores to wake up in a random sequence

is also a challenged task. ARMv8-A architecture does not

provide a solution for one core to directly read or write the

timer of another core. In this case, an intuitive design is to

use the cross-core interrupt to notify all cores on serving the

introspection in turn. ARMv8-A allows one core to generate a

secure interrupt to forcibly switching another core into the se-

cure world, so after core i finishes one round of introspection,

it can switch another core j into secure world and then core j
sets the secure timer for the next round introspection. However,

the switch of core j can also be probed by the normal world

so this method may leak the wake up sequence to the normal

world, which can defeat the benefits from randomly waking

up cores.

To protect the wake-up pattern from the normal world,

SATIN does not apply the cross-core interrupt mechanism, and

296

instead coordinates all cores via the secure memory. SATIN

stores the wake-up time of each core in the wake-up time

queue and requires each wake-up core to check the queue to

get next wake up time. For the devices with n cores, the wake-

up time queue contains n wake-up time slots. Each time value

is determined by the rule discussed in V-C. The initial wake-

up sequence of all CPU cores is set during the trusted booting

process. Then when any core enters the self activation module,

it picks the next time based on a random assignment. Once

all core extract their assigned slots from the queue, the self

activation module refreshes the queue with n newly generated

time values and newly generated random assignment. By

flushing the wake-up time queue and re-assigning the time

slots to each core, we can use all cores for kernel introspection

while prevent the normal world from knowing the awake core

or awake time for the next round of introspection. Finally, all

cores can coordinate to make sure each core inspects a random

memory area at a random wake-up time.

VI. SATIN IMPLEMENTATION AND EVALUATION

A. SATIN Implementation

To verify the effectiveness of SATIN on defeating TZ-

Evader, we develop a prototype of SATIN on the ARM Juno r1

development board with the same configuration as mentioned

in Section IV-A. We modify the Test Secure Payload in S-EL1

to implement the major modules of SATIN.

1) Self Activation Module: When the self activation module

is called on one core, the module stops the secure timer by

updating the register CNTPS CTL EL1. Then it takes the

assigned wake-up time from the Wake-Up Time Queue and

writes the value to comparer register CNTPS CV AL EL1.

After that, the module restarts the secure timer for that core.

For any core in the processor, when the shared physical timer

counter register CNTPCT EL0 becomes equal to or greater

than the per-core register CNTPS CV AL EL1, the core

raises a secure timer interrupt.

2) Integrity Checking Module: As we calculated in Sec-

tion IV-C, for each area of the checking module, its size

must be smaller than 1218351 bytes. Also, we implement

the integrity checking module to guarantee that each section

of the normal world OS’s System.map only belongs to one

area for introspection. Thus, we divide the normal world’s

kernel into 19 areas according to the System.map. Among

these areas, the largest one contains 876616 bytes and the

smallest one contains 431360 bytes. During the booting time,

SATIN hashes these 19 areas and then saves these hash values

into an authorized hash table stored in the secure world.

B. SATIN Evaluation

We evaluate the performance of SATIN in two aspects,

namely, the effectiveness on defeating TZ-Evader and the

triggered extra system overhead.

1) Defeating TZ-Evader: SATIN can effectively and se-

curely defeat TZ-Evader attacks. First, the introspection mod-

ule is deployed in the secure world, so we can protect the

introspection module from being compromised by malware

in the normal world. We assume the hardware-assisted Trust-

Zone technique can be trusted to protect the secure world.

Second, it can prevent malware from removing its traces

before the invocation of each introspection, since the normal

world cannot accurately predict or intercept the invocation of

introspection operations. Third, it can detect malware that uses

race condition to remove its traces during the introspection.

Because we divide the entire large introspection area into

smaller areas, we can finish the introspection of one small

area even before the malware detects the entrance of one core

into the secure world and then begins to remove the attacking

trace. In addition, it is user-friendly. The introspection does not

require to fully freeze the rich OS in the normal world. On

multi-core processors, since not all cores are forced to enter

the secure world at the same time, the rich OS can continue

to run on the remaining cores when one core conducts the

introspection on one core.

In our introspection mechanism, every m rounds of the

introspection can guarantee scanning the entire OS kernel

once and the average time between two rounds is tp. Within

the time period m ∗ (tp) +
∑m−1

i=0 sizearea i ∗ Ts 1byte, it

can successfully catch the malicious memory bytes within

the checked areas. In our experiment, the entire time is

approximately 152 s.
To validate the detection results, we execute TZ-Evader in

the normal world while running SATIN simultaneously in the

secure world. We set the probing thresholds of KProber as

1.8× 10−3 s. TZ-Evader maliciously modifies one system call

handler which resides in the area 14 of the integrity checking

module. SATIN conducts 190 rounds of introspection to ex-

amine the entire kernel 10 times. KProber can faithfully report

all 190 rounds of introspection without any false negative or

false positive. Among these rounds, SATIN checks area 14
10 times and correctly detects the hijacked handler all the

time. The average time between two consecutive checks for

area 14 is 141s. In the meanwhile, TZ-Evader attempts to

attack during these 10 checks but all the recovery efforts fail

since the memory cleaning occurs later than the introspection.

2) SATIN Overhead: We use UnixBench [41] to evaluate

the performance overhead on normal world operations when

enabling our TrustZone-based asynchronous introspection.

Figure 7 shows the normalized performance degradation when

we use the self activation module to wake up the secure world

across all cores of the device compared to the case where the

self activation module is not enabled.

Since our experiment platform consists of 6 cores (i.e., 4

A53 cores and 2 A57 cores), we measure the overhead using

two sets of experiments: executing each benchmark program

once (1-task) and invoking 6 copies of the same benchmark

simultaneously (6-task). In general, activating the introspection

incurs 0.711% and 0.848% performance degradation in the 1-

task and 6-task cases, respectively. This is reasonable as there

is an increasing chance for SATIN to interrupt the normal

world when more cores are utilized simultaneously. We also

notice that the two tasks file copy 256B and context
switching experience the largest overhead: 3.556% and

297

Fig. 7: SATIN Overhead

3.912%. The reason is that the test program happens to stay

right at the random-selected core for the secure world more

times than other cases. We believe this level of performance

overhead is acceptable especially when the normal world is not

suspended for even one nanosecond on multi-core systems.

C. SATIN Security Analysis

1) SATIN’s Security: SATIN’s security is based on the

feature that its control flow cannot be affected by the attackers,

which can be realized by utilizing TrustZone. Also, even con-

sidering recent TrustZone-related side-channel attacks [52],

since they are focused on attacking TrustZones confidentiality

instead of control flow, SATIN is secure.

2) SATIN Capability: SATIN is capable of detecting ad-

vanced persistent attacks that leave attacking traces during an

extended period, even if they apply TZ-Evader to hide their

traces. Similarly, SATIN can detect evasion attacks utilizing

other side channels. Finally, SATIN can reduce attack effi-

ciency and maximize the chances to detect APT attacks.

VII. DISCUSSION

A. TZ-Evader under Synchronous Introspection Protection

To accurately probe the secure world state, TZ-Evader

provides two implementation options, namely, (i) using the RT

scheduler and (ii) modifying the address of the IRQ exception

vector. Both options need to get the root privilege in the

normal world, which may have been protected by certain

synchronous introspection solutions. However, due to the in-

complete hooking locations and implementation bugs [20], it is

difficult, if not impossible, for the synchronous introspection to

ensure that the malware cannot obtain the root privilege in the

rich OS. For example, real attacks [26] have been discovered

to gain the root privilege even if the normal OS kernel is

being protected by real deployed synchronous introspection

mechanism KNOX-RKP [7].

After getting the root privilege, the attacker can freely

manipulate the RT scheduler, which has not been hooked or

protected by any existing synchronous introspection mecha-

nisms. Alternatively, with the root privilege, the attacker can

modify the address of IRQ exception vector by launching

the following data attack that cannot be prevented by the

synchronous introspection [20]. The synchronous introspection

method in both [7] and [17] set the vector table as non-

writable, so any writing attempt to the exception vector will

trigger a page fault and thus be trapped into the synchronous

introspection. However, after getting the root privilege, the

attack can utilize a write-what-where vulnerability [26] to

change the Access Permissions (AP) bits of the related page

table entry from non-writable to writable. After that, the

attacker can freely modify the vector table without triggering

the corresponding synchronous introspection.

B. TZ-Evader Limitation
In TZ-Evader, the probing threshold Tns threshold may

vary on different ARM processors, and the attacker has to

evaluate this value before attacking a targeted ARM processor.

If the attacker has a device which has the same processor

configuration as the attacking target, then the attacker can

disable the secure world to get the Tns threshold value quickly

and accurately. However, if the attacker is not able to evaluate

the threshold on a fully controlled device, then Tns threshold

needs to be learned from the victim directly. The attacker needs

to run multi-threads Time Reporter and Time Comparer for a

relatively long time (e.g., one hour) to study how the threshold

varies. For each time the secure application is running, the

attacker can observe the time difference among all cores. With

the long-term study, the attacker can determine Tns threshold

for the target device and then start the TZ-Evader.

C. Necessity of Asynchronous Introspection
Synchronous introspection protection is an effective de-

fending mechanism; however, due to the high-performance

overhead, incomplete hooking locations, and implementation

bugs, it may still be circumvented [20], [26]. With a small

execution overhead, asynchronous introspection provides one

more layer of secure protection in addition to synchronous

introspection. For example, Samsung TIMA deploys a syn-

chronous introspection mechanism called Real-time Kernel

Protection (RKP) in the hypervisor to protect virtual machines

in the normal world and deploys an asynchronous introspec-

tion mechanism called Periodical Kernel Measurement (PKM)

in TrustZone to protect the hypervisor [37]. Moreover, one

main usability limitation of asynchronous introspection (i.e.,

rich OS suspension) on the single-core processors can be

resolved on the multi-core processors by assigning one core

on security checking and continuing normal operations of the

normal world OS on other cores.

D. Portability of SATIN
SATIN architecture has three requirements, namely, multi-

core processors, a high-privileged operating mode, and a

secure timer. Since most modern processors support multi-

core architecture, it is reasonable to allocate one core for per-

forming the asynchronous introspection on most processors.

298

Therefore, besides ARM TrustZone, SATIN can be ported on

other TEE architectures that can provide a secure timer and

high-privilege for introspection.

VIII. RELATED WORK

A. Asynchronous Introspection

Asynchronous introspection mechanisms [14], [15], [18],

[22], [24], [27], [33], [34], [36], [48] have been popularly

deployed to protect OS kernel integrity. OSck [18] executes a

verifier process alongside the target kernel and periodically

scans the memory to identify any policy violation. Sig-

Graph [27] proposes to use the graph-based signature to scan

the kernel data structure instance and detect the rootkits that

are capable of manipulating the data structures. Specialized

security tools have been constructed for running on a trusted

virtual machine (VM) to detect any security violation on a

target VM [15], [16], [36].

Zhang et al. [53] first propose the concept of using an

isolated device as the integrity monitor. Then, Copilot [33]

utilizes a PCI add-in card to periodically verify the hash

checksum of the kernel static data. Later, several system man-

agement mode (SMM) based introspection mechanisms have

been proposed [8], [24], [47], [48], where HyperCheck [48]

and SPECTRE [47] employ the SMM to outsource the

snapshot of the kernel to a remote server and conduct the

introspection on the server side. HyperSentry [8] performs

the kernel measurement locally by periodically triggering the

host’s SMM via an out-of-band channel. Among SMM-based

security mechanisms, multi-core platforms are only briefly

mentioned in [8] on freezing all cores during the SMM-based

measurement task. The authors of HyperCheck [48] mention

that it could be extended on multi-core processors; however,

there is no detailed design about it. Several introspection

mechanisms are proposed based on other hardware compo-

nents which can check the kernel transparently [14], [42].

Ether [14] proposed an Intel-VT [19] based kernel analyzer to

analyze the software within the virtual machine. LO-PHI [42]

transparently examines the kernel memory snapshots without

exposing any software-based artifacts by using additional

hardware sensors and actuators.

B. Synchronous Introspection

A number of synchronous introspection mechanisms [7],

[17], [25], [30], [32], [40], [46] have been proposed to

work on different architectures too. On ARM processors,

SPROBES [17] and TZ-RKP [7] are two TrustZone-based

synchronous introspection mechanisms proposed recently.

SPROBES [17] injects special code into the security-sensitive

kernel handlers so it can dynamically check these handlers in

the secure world and provide the real-time protection for the

normal world. TZ-RKP [7] achieves a similar security goal but

focuses on monitoring the data integrity and optimizing the

rich OS’s performance. Besides utilizing existing hardware-

features of the ARM processor, customized hardware has been

developed to snoop the memory bus and monitor the security-

related writes to the kernel area [25], [29], [30].

C. Hardware-Assisted TEE

Nowadays more and more mechanisms have been proposed

to provide a hardware-assisted trusted execution environment

(TEE) on various hardware architectures [49]. Based on the

ARM TrustZone technology, several works [21], [50]–[52]

are proposed to investigate and enhance the security of the

TrustZone secure world. Meanwhile, TrustZone has been

utilized to enhance the security of applications running in

the normal world against a malicious rich OS [12], [38],

[44]. Santos et al. [38] propose to run the security-sensitive

piece of the normal world .NET apps within the secure world.

TrustICE [44] provides the solution to allocate the isolated

environment for any normal world application, and Cho et

al. [12] extend this idea for isolating both normal world

application and the hypervisor. Besides the ARM hardware

architecture, SICE [9] introduced the SMM-based isolated

environment for x86 multi-core platforms. SICE can provide

the remote attestation for the user to verify the integrity of

the kernel within its isolated environment. Based on SMM,

it is plausible to port our secure asynchronous introspection

on X86 multi-core processors. Several works about the recent

Intel hardware feature SGX [6], [10], [39] are also capable

of measuring the integrity of the kernel running in the SGX

enclave and providing remote attestation. However, since SGX

enclaves are scheduled by the host OS, the SGX technique

cannot be used to perform asynchronous introspection against

the host OS.

IX. CONCLUSION

In this paper, we propose a trustworthy and practical

TrustZone-based asynchronous introspection mechanism for

ARM multi-core platform. We first show that on multi-core

systems, even if the secure world uses a random core to inspect

the rich OS kernel at random time point as previous asyn-

chronous introspection solutions do, the malware in the normal

world can still escape from the security checking by utilizing

the race condition between the detector running on one core

and the malicious evader running on other cores at the same

time. We identify this new type of evasion attack as TZ-Evader

and conduct a systematic study on it. We develop a proof-

of-concept TZ-Evader attack that uses an accurate kernel-

level prober to defeat the existing asynchronous introspection.

Finally, we develop a secure TrustZone-based asynchronous

introspection mechanism called SATIN on multi-core ARM

processors to defeat the TZ-Evader attacks. We implement

a prototype of SATIN on ARM Juno r1 development board

and the experimental results show that SATIN can effectively

prevent evasion attacks on multi-core systems with a minor

overhead.

X. ACKNOWLEDGMENTS

This work is partially supported by the U.S. ONR grant

N00014-16-1-3214, ONR grant N00014-16-1-3216, ONR

grant N00014-18-2893, NSFC grant 61572278, and NSFC

grant U1736209.

299

REFERENCES

[1] ARM, “Programmer’s guide for armv8-a,” 2015, http://infocenter.arm.
com/help/topic/com.arm.doc.den0024a/DEN0024A v8 architecture
PG.pdf.

[2] ——, “Arm exception table,” 2018, http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.den0024a/CHDEEDDC.html.

[3] ——, “Arm trusted firmware,” 2018, https://github.com/ARM-software/
arm-trusted-firmware.

[4] ——, “Juno Arm Development Platform,” 2018, https:
//developer.arm.com/products/system-design/development-boards/
juno-development-board.

[5] ARM Community, “Arm linaro instruction,” 2018, https://community.
arm.com/dev-platforms/w/docs/303/juno.

[6] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell et al., “Scone:
Secure linux containers with intel sgx.” in OSDI, vol. 16, 2016, pp.
689–703.

[7] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 90–102.

[8] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skalsky,
“Hypersentry: enabling stealthy in-context measurement of hypervisor
integrity,” in Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 2010, pp. 38–49.

[9] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Pro-
ceedings of the 18th ACM conference on Computer and communications
security. ACM, 2011, pp. 375–388.

[10] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an
untrusted cloud with haven,” ACM Transactions on Computer Systems
(TOCS), vol. 33, no. 3, p. 8, 2015.

[11] F. Brasser, D. Kim, C. Liebchen, V. Ganapathy, L. Iftode, and A.-R.
Sadeghi, “Regulating arm trustzone devices in restricted spaces,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’16, 2016, pp. 413–
425.

[12] Y. Cho, J.-B. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek, “Hardware-
assisted on-demand hypervisor activation for efficient security critical
code execution on mobile devices.” in USENIX Annual Technical Con-
ference, 2016, pp. 565–578.

[13] Corbet, “How fast should hz be?” 2005, https://lwn.net/Articles/145973/.
[14] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis

via hardware virtualization extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security. ACM, 2008,
pp. 51–62.

[15] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” in Secu-
rity and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp.
297–312.

[16] Y. Fu and Z. Lin, “Space traveling across vm: Automatically bridging
the semantic gap in virtual machine introspection via online kernel data
redirection,” in Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, 2012, pp. 586–600.

[17] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” arXiv preprint arXiv:1410.7747,
2014.

[18] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel, “En-
suring operating system kernel integrity with osck,” in ACM SIGARCH
Computer Architecture News, vol. 39, no. 1. ACM, 2011, pp. 279–290.

[19] Intel, “Intel virtualization technology,” 2018, https://www.intel.com/
content/www/us/en/data-center/new-center-of-possibility.html.

[20] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok:
Introspections on trust and the semantic gap,” in Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 605–620.

[21] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure
channel between rich execution environment and trusted execution
environment.” in NDSS, 2015.

[22] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Proceed-
ings of the 14th ACM conference on Computer and communications
security. ACM, 2007, pp. 128–138.

[23] M. A. Kinsy, S. Khadka, M. Isakov, and A. Farrukh, “Hermes: Secure
heterogeneous multicore architecture design,” in 2017 IEEE Interna-
tional Symposium on Hardware Oriented Security and Trust (HOST),
May 2017, pp. 14–20.

[24] K. Leach, C. Spensky, W. Weimer, and F. Zhang, “Towards transpar-
ent introspection,” in Software Analysis, Evolution, and Reengineering
(SANER), 2016 IEEE 23rd International Conference on, vol. 1. IEEE,
2016, pp. 248–259.

[25] H. Lee, H. Moon, I. Heo, D. Jang, J. Jang, K. Kim, Y. Paek, and
B. Kang, “Ki-mon arm: A hardware-assisted event-triggered monitoring
platform for mutable kernel object,” IEEE Transactions on Dependable
and Secure Computing, 2017.

[26] Lev Aronsky, “Knoxout-bypassing samsung knox,” 2016, http://media.
wix.com/ugd/4e84e6 668d564cc447434a9a8fda3c13a63f6a.pdf.

[27] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “Siggraph: Brute
force scanning of kernel data structure instances using graph-based
signatures.” in Ndss, 2011.

[28] Linaro, “Optee secure os,” 2018, https://github.com/OP-TEE/optee\ os.
[29] Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi, Cpu transparent

protection of os kernel and hypervisor integrity with programmable
dram. ACM, 2013.

[30] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, “Vigilare:
toward snoop-based kernel integrity monitor,” in Proceedings of the 2012
ACM conference on Computer and communications security. ACM,
2012, pp. 28–37.

[31] Ozan (oz) Yigit, “Hash functions,” 2018, http://www.cse.yorku.ca/∼oz/
hash.html.

[32] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture
for secure active monitoring using virtualization,” in Security and
Privacy, 2008. SP 2008. IEEE Symposium on. IEEE, 2008, pp. 233–
247.

[33] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-a
coprocessor-based kernel runtime integrity monitor.” in USENIX Security
Symposium. San Diego, USA, 2004, pp. 179–194.

[34] N. L. Petroni Jr and M. Hicks, “Automated detection of persistent kernel
control-flow attacks,” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM, 2007, pp. 103–115.

[35] Project Zero, “Lifting the (hyper) visor: Bypassing samsung’s real-time
kernel protection,” 2017, https://googleprojectzero.blogspot.com/2017/
02/lifting-hyper-visor-bypassing-samsungs.html.

[36] A. Saberi, Y. Fu, and Z. Lin, “Hybrid-bridge: Efficiently bridging the
semantic gap in virtual machine introspection via decoupled execution
and training memoization,” in Proceedings of the 21st Annual Network
and Distributed System Security Symposium (NDSS’14), 2014.

[37] Samsung Electronics Co. Ltd., “White paper: An overview of
the samsung knox platform,” https://kp-cdn.samsungknox.com/
6ee7dbf222f5eabeafea9d15e3986f09.pdf.

[38] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm trustzone
to build a trusted language runtime for mobile applications,” ACM
SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 67–80, 2014.

[39] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich, “Vc3: Trustworthy data analytics in the cloud
using sgx,” in Security and Privacy (SP), 2015 IEEE Symposium on.
IEEE, 2015, pp. 38–54.

[40] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity oses,” in ACM
SIGOPS Operating Systems Review, vol. 41, no. 6. ACM, 2007, pp.
335–350.

[41] B. Smith, R. Grehan, T. Yager, and D. Niemi, “Byte-unixbench: A unix
benchmark suite,” 2011.

[42] C. Spensky, H. Hu, and K. Leach, “Lo-phi: Low-observable physical
host instrumentation for malware analysis.” in NDSS, 2016.

[43] H. Sun, K. Sun, Y. Wang, J. Jing, and S. Jajodia, “Trustdump: Reliable
memory acquisition on smartphones,” in In Proc. European Symposium
on Research in Computer Security, 2014.

[44] H. Sun, K. Sun, Y. Wang, J. Jing, and H. Wang, “Trustice: Hardware-
assisted isolated computing environments on mobile devices,” in De-
pendable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP
International Conference on. IEEE, 2015, pp. 367–378.

[45] J. Wang, K. Sun, and A. Stavrou, “A dependability analysis of hardware-
assisted polling integrity checking systems,” in Dependable Systems and
Networks (DSN), 2012 42nd Annual IEEE/IFIP International Confer-
ence on. IEEE, 2012, pp. 1–12.

300

[46] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel rootkits
with lightweight hook protection,” in Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009,
pp. 545–554.

[47] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “Spectre: A dependable
introspection framework via system management mode,” in Dependable
Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP Interna-
tional Conference on. IEEE, 2013, pp. 1–12.

[48] F. Zhang, J. Wang, K. Sun, and A. Stavrou, “Hypercheck: A hardware-
assisted integrity monitor,” IEEE Transactions on Dependable and
Secure Computing, vol. 11, no. 4, pp. 332–344, 2014.

[49] F. Zhang and H. Zhang, “Sok: A study of using hardware-assisted
isolated execution environments for security,” in Proceedings of the
Hardware and Architectural Support for Security and Privacy 2016.
ACM, 2016, p. 3.

[50] N. Zhang, H. Sun, K. Sun, W. Lou, and Y. T. Hou, “Cachekit: Evading
memory introspection using cache incoherence,” in 2016 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2016, pp. 337–
352.

[51] N. Zhang, K. Sun, W. Lou, and Y. T. Hou, “Case: Cache-assisted secure
execution on arm processors,” in Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 2016, pp. 72–90.

[52] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache
side-channel information leakage from the secure world on arm devices.”
IACR Cryptology ePrint Archive, vol. 2016, p. 980, 2016.

[53] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure
coprocessor-based intrusion detection,” in Proceedings of the 10th
workshop on ACM SIGOPS European workshop. ACM, 2002, pp.
239–242.

301

