Understanding the Practice of Security Patch Management
across Multiple Branches in OSS Projects

Xin Tan" Yuan Zhang' Jiajun Cao
Fudan University Fudan University Fudan University
China China China
18212010028 @fudan.edu.cn yuanxzhang@fudan.edu.cn 20210240046 @fudan.edu.cn
Kun Sun Mi Zhang Min Yang
George Mason University Fudan University Fudan University
United States China China
ksun3@gmu.edu mi_zhang@fudan.edu.cn m_yang@fudan.edu.cn

ABSTRACT

Since the users of open source software (OSS) projects may not
use the latest version all the time, OSS development teams often
support code maintenance for old versions through maintaining
multiple stable branches. Typically, the developers create a stable
branch for each old stable version, deploy security patches on the
branch, and release fixed versions at regular intervals. As such,
old-version applications in production environments are protected
from the disclosed vulnerabilities in a long time. However, the
rapidly growing number of OSS vulnerabilities has greatly strained
this patch deployment model, and a critical need has arisen for the
security community to understand the practice of security patch
management across stable branches. In this work, we conduct a
large-scale empirical study of stable branches in OSS projects and
the security patches deployed on them via investigating 608 stable
branches belonging to 26 popular OSS projects as well as more than
2,000 security fixes for 806 CVEs deployed on stable branches.
Our study distills several important findings: (i) more than 80%
affected CVE-Branch pairs are unpatched; (ii) the unpatched vul-
nerabilities could pose a serious security risk to applications in
use, with 47.39% of them achieving a CVSS score over 7 (High or
Critical Severity); and (iii) the patch porting process requires great
manual efforts and takes an average of 40.46 days, significantly
extending the time window for N-day vulnerability attacks. Our
results reveal the worrying state of security patch management
across stable branches. We hope our study can shed some light on
improving the practice of patch management in OSS projects.

CCS CONCEPTS

«» General and reference — Empirical studies; « Security and
privacy — Software security engineering.

*co-first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WWW 22, April 25-29, 2022, Virtual Event, Lyon, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. .. $15.00
https://doi.org/10.1145/3485447.3512236

KEYWORDS
Security Patches, Patch Deployment Study, OSS Vulnerabilities

ACM Reference Format:

Xin Tan, Yuan Zhang, Jiajun Cao, Kun Sun, Mi Zhang, and Min Yang. 2022.
Understanding the Practice of Security Patch Management across Multiple
Branches in OSS Projects. In Proceedings of the ACM Web Conference 2022
(WWW °22), April 25-29, 2022, Virtual Event, Lyon, France. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3485447.3512236

1 INTRODUCTION

Open source software (OSS) plays an important role in all kinds of
information systems, as well as the whole web infrastructure. As
the development of vulnerability discovery techniques (e.g, AFL [1],
Syzkaller [2]) and infrastructures (e.g, OSS-Fuzz [20], syzbot [3]),
the number of disclosed OSS vulnerabilities is growing rapidly.
According to a recent report [47], the number of disclosed vulner-
abilities in OSS in 2020 has increased by 50%. OSS vulnerabilities
have emerged as an increasingly severe threat. To fight against
these N-day threats, it is particularly important to develop and
deploy patches for the disclosed vulnerabilities in OSS.

Meanwhile, the OSS developers usually maintain one or more
stable branches at the same time. Typically, when a major version
is released, the developers may fork the version as a stable branch
from the mainline. Then, they would continuously apply bug and
security related fixes on the stable branches, including releasing
patched versions from the stable branches, but would not make
further feature updates. Such a practice enables users of old versions
that may not always use the latest versions due to various reasons
such as legacy features or stability requirements, to obtain the fixed
applications from the corresponding stable branch.

Security patch management is an essential task when managing
multiple stable branches. That is, to protect the users of old versions,
a security patch should not only be deployed on the mainline, but
also be ported to all stable branches that are also vulnerable to the
vulnerability. However, since a security patch may not be directly
applicable to another branch, the patch porting is usually done
manually and consumes a huge amount of resources. The lack of
resources and expertise presents a huge challenge for security patch
management across stable branches. Hence, stable branches may
take a long time to be fixed or never be fixed, exposing users of
older stable versions to “N-day” vulnerability threats.

https://doi.org/10.1145/3485447.3512236
https://doi.org/10.1145/3485447.3512236

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

Among the existing works that investigate the security patch
deployment and lifecycle, most of them only focus on the patch-
ing process on the mainline [18, 19, 25, 37]. In addition, there are
few studies [15, 49] that explored the patch propagation from the
upstream Android OSS projects (e.g., Android kernels, Android
framework) to downstream vendors. However, the patch manage-
ment and propagation across stable branches within OSS projects
have not been well explored, particularly, due to the two challenges:
@ it requires to identify stable branches from the more non-stable
branches in the OSS code repository; and @ it requires to assess
the deployment status of the security patch on each affected sta-
ble branch of a vulnerability. For the first challenge, there is no
automated method to do so. For the second challenge, no existing
work could automatically locate all the security patches deployed
on different branches for the same vulnerability. In particular, there
is a line of works that aim to identify bug-fixing commits [21-
23, 29, 40, 43] or security patch commits [45, 46] in the code reposi-
tory. However, since the patches may be customized during porting,
these works cannot guarantee to link a specific vulnerability with
all its security patches across stable branches. Further, the exist-
ing patch database [46] only provides one patch for a disclosed
vulnerability, which is usually on the mainline.

In this work, we make the first attempt to study the security
patch management across the stable branches in OSS. We pay great
efforts to manually collect stable branches in OSS projects. Overall,
we select 26 popular OSS projects as target software, collecting a
total of 608 stable branches. These projects are written in 5 pop-
ular programming languages (i.e., C, C++, Java, PHP and Python)
and belong to various application types (e.g., kernels, databases,
libraries). For each OSS project, we collect all its associated vul-
nerabilities from NVD [31] and collect the related vulnerability
information, especially, its security patches. Further, we develop
a semi-automatic approach to identify the patches on each stable
branch vulnerable to the collected vulnerabilities. In all, we collect
806 CVEs along with 2,099 patches on the stable branches.

With the collected dataset, we perform a study from the following
four aspects: reporting the distribution and characteristics of stable
branches, measuring the patch deployment status across stable
branches, analyzing the unpatched branches to reveal the reasons
of not being patched and potential security threats, and analyzing
the patched branches to reveal the challenges and efforts in patch
porting. Our overall findings are worrisome. Over 80% of CVE-
Branch pairs are not patched. Apart from MongoDB, Wireshark
and Suricata, most of the software under our investigation did a
poor job on security patch management, with a patch ratio below
60%. We uncover that there are two main reasons for stable branches
not deploying corresponding patches, namely, branches no longer
being maintained and patch management issues. We also reveal that
the patch porting process is complicated and takes an average of 40
days to complete. In 82.36% of ported patches, the original patches
cannot be directly deployed and some adjustments are required.

In summary, we make the following contributions.

o Large-scale Dataset. We build a dataset of security patches de-
ployed on different stable branches, including 2,099 security
patches and 608 stable branches in 26 OSS projects.

o Empirical Study. We perform a deep study on the patch manage-
ment practice across multiple stable branches. Our study reveals

Tan and Zhang, et al.

the poor security patch management across stable branches in
OSS projects and motivates the open source community as well
as the security community for improvement.

2 BACKGROUND

Multi-branch Management of OSS. Branching is a common
practice in managing the development and maintenance of OSS,
and it is widely supported by popular version control systems such
as Git. In a version control system, a branch is initially created as
a copy of the current code snapshot. Thereafter, developers could
modify the code and the version control system will keep track
of all these modifications. With code branching, developers can
effectively manage the software development and maintenance pro-
cess by managing multiple isolated and concurrent code branches.
According to the development model, there are usually multiple
branches in an OSS project. Among all these branches, there is
a main development branch (usually called master branch in Git)
where developers add new features, and the other branches serve
different purposes. By investigating the code repository of several
popular OSS, we observe the following three specific purposes:

o Stable branch. Stable branches are used to maintain the released
stable versions. When a new minor version (defined in semantic
versioning [13]) is officially released as a stable version for users,
a corresponding stable branch is created in the code repository.
After that, the developers mainly work on the stable branch to
fix security issues and publish patched versions (in semantic
versioning [13]). Besides, a few software also apply small feature
updates on the stable branch.

o Temporary branch. They are created to develop specific features,
fix specific issues, or perform software testing separately. After
the specific task on the temporary branch completes, all the new
code changes should be merged into other branches (such as
master branch) and the temporary branch may be removed.

e Mirror branch. A mirror branch is a copy of one codeline at a
certain point. Unlike the stable branches, there will be no code
changes on the mirror branch after the branch point.

Tagging, the ability to tag a specific point in a repository’s history
(such as a commit), is one important operation in version control
systems. A tag is a static code snapshot of the project while a branch
is a codeline that changes dynamically. Typically, developers use
tagging to mark release points and make snapshots of the project
as released code versions. Our measurement takes the branches as
the research targets to understand when and how security patches
have been deployed throughout the history of software.

Patch Management across Stable Branches. To make all stable
branches immune to known vulnerabilities, once a vulnerability
is reported, developers should deploy the security patches to all
the affected stable branches quickly. Instead of developing separate
patches for each branch, developers tend to develop a patch on
one branch (e.g., the master branch) first and then port it to other
branches. During the patch porting process, the developers may
need to make minor changes to the original patch and submit it to
the corresponding stable branch. After the patches are ported to
all affected stable branches, all users are able to access a patched
version for their used OSS versions and update their OSS to this
version on their machines.

Understanding the Practice of Security Patch Management across Multiple Branches in OSS Projects

Ideally, the security patch should be ported to all vulnerable sta-
ble branches. However, patch porting may take hours, days or even
months, resulting in longer attack windows against stable branches.
To the best of our knowledge, no measurement has been performed
to explore the patch management practice across stable branches
in OSS projects. Therefore, our work is dedicated to performing the
first measurement to reveal the patch deployment status on stable
branches and understand the patch management practice in the
multi-stable-branch scenarios.

3 DATA COLLECTION

Code Popular OSS Projects

GitI-Iub A
M_’ @ ‘ .““:%g;hn

n o, |
SSL fjHm |

NVD
|
(oo) —

One patch for
each CVE

. <_ Patch Collection

Step2: Collect disclosed vulnerabi-
lities and patch information

Associated
CVEs

Stable
Branches|

Ma_nual_
Investigation

‘ Step1: Collect multi-

branch software
Locating Affected Affected
Stable Branches Branches

Step3: Locate security patches on
affected branches

' -
—
rrcin] —- S
-—

Dataset: Patches on All
Affected Stable Branches

Figure 1: The Overview of the Data Collection Process.

An extensive dataset constructs the basis for our study. As shown
in Figure 1, we follow three steps to construct the dataset. First, we
collect some OSS projects that manage multiple stable branches.
Second, we collect some disclosed vulnerabilities associated with
these software and try to locate one security patch for each vul-
nerability. Third, based on a given patch, we try to collect other
security patches on all affected stable branches. In the following,
we present the details of each step.

Step 1: Collecting Multi-branch Software. We collect OSS and
their code repositories from GitHub [6], because it contains mil-
lions of OSS projects. We mainly consider OSS projects written in
C/C++/Java/PHP/Python due to their popularity. At first, we collect
popular OSS projects in GitHub by picking the top 1,000 popular
projects for each language and referring to some popular software
ranking lists [44]. Then, we query the NVD to get the number of
CVEs for each software, and only keep those projects with more
than 24 CVEs (to balance the number of the kept OSS projects and
the quantity of CVEs for each kept project). For these projects,
we manually determine if the project maintains multiple stable
branches in its repository. As described in §2, a code repository
may contain many branches with different purposes. We manually
identify the stable branches from two aspects. First, we review the
official website of the software projects to find the documentation
about the different purposes of code branches. Second, we analyze
the branch itself, including reviewing the submitted commits and
inspecting the related documentation (e.g., README in the branch),
to determine the branch’s role. If the roles of the branches cannot be

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

determined by any of these methods, we discard this software. Fol-
lowing the manual analysis, we select 72 OSS projects that manage
at least two stable branches each.

Step 2: Collecting Disclosed Vulnerabilities and Patch Infor-
mation. We collect the disclosed vulnerabilities for an OSS project
from NVD. For each vulnerability, NVD provides not only the vul-
nerability description and relevant external references but also
much additional information, including all potentially vulnera-
ble software versions under the Common Product Enumerator
(CPE) [34], the class of weakness under the Common Weakness
Enumeration (CWE) [14], and the vulnerability severity under the
Common Vulnerability Scoring System (CVSS) [33]. We use the
NVD XML dataset [32] collected on August 25th, 2021 as the source.

To locate all the disclosed vulnerabilities associated with an OSS
project, we leverage the CPE information provided by the NVD.
We scan each NVD entry disclosed from January, 2017 to August,
2021 and extract the potentially affected applications from the CPE
Applicability Statement. If the affected applications contain the
name of an OSS that is collected in the Step I, we associate the
vulnerability with this OSS.

After collecting the associated vulnerabilities, we use a web
crawler and manual analysis to locate the security patches of these
vulnerabilities. Several researchers [25, 45] observe that some URLs
among the external references in NVD may point to particular
patch commits that fix the security vulnerability in the repository.
Therefore, we develop a web crawler to identify all the commit-like
URLs in NVD entries and fetch the commits from the code reposito-
ries. Since such a method may introduce some non-patch commits,
these crawled commits are further manually re-validated to guar-
antee the correctness. In all, we manually inspect 446 commits and
confirm 425 of them as patch commits and the other 21 commits
as non-patch commits, involving about 20 man-hours. When there
is no patch information located by the crawler for some CVEs, we
manually locate the patches for them, using ways such as referring
to vulnerability reports of other sources, search engines.

To keep our study unbiased, we further filter out the OSS that
have too few stable branches or too few disclosed vulnerabilities
with located patches. Specifically, we select the target software from
our collected software based on two criteria: i) the software must
contain at least 4 stable-branches in its source code repository; ii)
the software must have at least 20 disclosed vulnerabilities with
patches located in our dataset. Furthermore, if a software has a
large number of vulnerabilities, we only randomly select 50 vulner-
abilities. Overall, we select 26 OSS projects from the 72 ones picked
in the Step 1 and collect 806 CVEs from them.

Step 3: Locating Security Patches on Affected Branches. Af-
ter obtaining one patch for each vulnerability, we devise a semi-
automated method to locate the security patches on all affected
stable branches. Our method is based on two important observa-
tions. First, patches that fix the same vulnerability on two different
branches may have similar code diff or commit messages. Second,
when porting a patch to another branch, developers tend to men-
tion the commit ID of the ported patch in the commit message. For
example, when a developer uses the cherry-pick command in Git
to port a patch commit from one branch to another, he or she often
adds a line after the original commit message that says “cherry

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

picked from commit some-commit-id” to let others know where
this commit comes from.

Based on these observations, we first automatically identify po-
tential patches for a specific vulnerability on each affected sta-
ble branch and then manually verify them. In general, our semi-
automated method consists of three steps.

(1) We determine the affected versions of the vulnerability from
the CPE information provided by NVD and associate them to
the stable branches in the code repository.

(2) Given a reference patch commit (that has been located in Step 2),
we scan all the commits in each affected branch and locate the
patch commit for the target vulnerability using a heuristic-based
method. As listed in Table 8 (in Appendix), we formulate 10
rules based on the above observations, which can be divided into
two categories: i) rules that can directly locate patch commits
and require no further manual inspection; ii) rules that identify
potential patch commits and require further manual inspection.

(3) We manually verify the potential patch commits that are iden-
tified by the semi-automated method.

In all, three security researchers spend 150 hours on verifying
the potential patch commits and successfully locate 1,905 patches.
For cases that our semi-automated method fails to locate patches,
we further resort to manual efforts for patch locating to ensure
that no patches are missed in our dataset. To manually locate the
patch on a given code branch, we first analyze the root cause of
the vulnerability based on the reference patch commit and then
carefully audit every commits on the given branch for patch lo-
cating. If no patch is found, we deem the branch as unpatched for
the vulnerability. Following this way, we further locate 194 new
patches that are missed by our semi-automated method. In total,
we end up locating 2,099 security patches on the affected branches.

Summary. Following the three steps, we successfully construct
a dataset, which consists of 26 popular OSS projects (covering 5
popular programming languages), 608 stable branches, 806 CVEs,
and 2,099 patches on the stable branches. The details about these
OSS projects can be found in Table 10 (in Appendix). Although we
have tried our best to automate the data collection steps, there are
still many cases that require manual efforts. In total, it takes 340
man-hours in constructing the dataset.

4 STUDY

Based on the large-scale dataset, we investigate the practice of
security patch management across stable branches. In general, we
study the following research questions.

e RQI: Stable-branch distribution and characteristics. What is the
distribution of stable branches in OSS? What are their character-
istics in terms of maintenance time and code commits?

o RQ2: Patch deployment status on stable branches. Are the security
patches for disclosed vulnerabilities properly applied to all stable
branches? Is there a difference between OSS projects?

o RQ3: Unpatched branches analysis. What is the reason for not
deploying the appropriate patches on stable branches? What
security risks does this cause?

® RQ4: Patched branches analysis. To deploy patches across stable
branches, what effort is required from the developers? How long
does the patch porting process take?

Tan and Zhang, et al.

4.1 Stable Branches (RQ1)

Stable Branch Distribution. In total, we collect 608 stable branches
in 26 OSS projects. As shown in Table 10 (column 3), the distribution
of the number of stable branches is uneven. The HHVM [7] owns
over 100 stable branches while some OSS projects such as BigTree
CMS [4] and phpMyAdmin [11] have less than 10 stable branches.
The number of stable branches is mainly affected by the develop-
ment speed and release frequency of the OSS project. For example,
the development of HHVM moves fast and the development team
releases a new major version every week [8], resulting in HHVM
having the most stable branches. In contrast, Bigtree CMS releases
a major version approximately once per year [5]. As a result, it
owns few stable branches. Furthermore, the longer the software
lives, the larger number of stable branches it has. Since the Linux
kernel is almost 30 years old, it has the second most stable branches
out of 26 collected OSS projects.

Stable Branch Characteristics. For each stable branch, we in-
vestigate the submitted commits on them and their maintenance
duration. We obtain the maintenance duration of each stable branch
by subtracting the branch setup time from the time that the branch
was last committed. As shown in Table 10 (the last column), most
software maintain stable branches for a long time. In 20 out of
26 OSS projects, each stable branch is maintained for more than
one year on average. In addition, there are 3 OSS projects (QEMU,
Pillow, HHVM) that provide maintenance to the stable branches for
a relatively short period, less than 3 months. We also measure the
number of submitted commits on each branch during the mainte-
nance duration. As Table 10 (column 7) shows, the average number
of commits per stable branch varies considerably among software.
We observe that a longer maintenance time of a branch does not
mean more commits will be submitted on that branch. For example,
QEMU [12] has more commits submitted on its stable branches than
OpenEMR [10], though its maintenance duration is only a third of
OpenEMR’s. We suppose that the number of commits submitted
on stable branches is influenced by a combination of factors such
as software size, maintenance duration, and maintenance policy.

Finding 1. Maintaining multiple stable branches is a com-
mon practice adopted in OSS projects. However, the practice
of managing these stable branches differs significantly among
these projects in various ways, such as branch count, mainte-
nance period, maintenance frequency, predicating different
practice in managing security patches among these branches.

4.2 Patch Deployment Status (RQ2)

Overall Patch Ratio. We first measure the deployment status of
patches for disclosed vulnerabilities on all affected stable branches.
During the dataset construction in §3, we have labeled the affected
stable branches for all the 806 CVEs. The patch status of each CVE
branch pair can be easily marked according to the presence of the
patching information in our dataset. Table 1 presents the overall
patch deployment results. From this table, we observe that the
proportion of unpatched CVE-Branch pairs is high regardless of
the programming language. In Java and PHP, more than 70% of
CVE-Branch pairs are unpatched. In the other three languages, the
situation is even worse, with more than 80% of CVE-Branch pairs

Understanding the Practice of Security Patch Management across Multiple Branches in OSS Projects

Table 1: Overall Patch Deployment Status (RQ2).

Language #CVEs #CVE-].Sranch #Pat?hed #Unpa.tched
Pairs Pairs Pairs
C 383 5,907 982 (16.62%) 4,925 (83.38%)
Ct++ 72 1,821 270 (14.83%) 1,551 (85.17%)
Java 60 391 108 (27.62%) 283 (72.38%)
PHP 208 2,240 618 (27.59%) 1,622 (72.41%)
Python 83 607 121 (19.93%) 486 (80.07%)
Total 806 10,966 2,099 (19.14%) 8,867 (80.86%)

300 4 36.85%

250 4

200 4

150 1

Count

100 1

504

0.99% 0.62% (.12%

00 01 02 03 04 05 06 07 08 09 1.0
CVE Patch Ratio

Figure 2: CVE Patch Ratio (CVE-PR) Distribution (RQ2).

unpatched. Our results show the patch deployment status on stable
branches is worrisome and many stable branches are exposed to
security risks.

Finding 2. More than 80% of CVE-Branch pairs are unpatched,
indicating there is much room for improvement in deploying
patches across multiple branches.

Analysis of Patch Ratio. We further analyze the patch deploy-
ment status from the perspectives of per CVE, branch and OSS
project, respectively.

@ Per CVE Perspective. We define CVE Patch Ratio (CVE-PR) to
measure how well a CVE is fixed on all affected branches.

#of patched branches
#of branches af fected by the CVE

As shown in Figure 2, a considerable number of CVEs (36.85%)
have a CVE-PR higher than 0.9, which means they are properly
fixed in affected stable branches. Meanwhile, there are also a large
number of CVEs (57.82%) that have a CVE-PR lower than 0.5, which
means they are not well fixed in affected stable branches. This
phenomenon is somewhat similar to the Matthew effect [27, 28]. As
a CVE is fixed on more stable branches, developers would realize

CVE-PR =

that other affected branches should also be patched, and vice versa.

@ Per Branch Perspective. We define Branch Patch Ratio (B-PR) to
measure how well a stable branch is maintained against security
vulnerabilities.

of CVEs patched on this branch

B-PR =
#of CVEs af fect this branch

As shown in Figure 3, most stable branches have a low B-PR. In
particular, 60.11% of stable branches have a B-PR lower than 0.1
and 74.24% of stable branches have a B-PR lower than 0.5. Only
13.06% of stable branches are patched for over 90% of CVEs. It
clearly demonstrates that the patch management among most stable
branches is far from good.

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

3509 60.11%

300 A

250

200

Count

150 4

100 4

50 4

50% 1610 240 340% 1799,

00 01 02 03 04 05 06 07 08 09 1.0
Branch Patch Ratio

Figure 3: Branch Patch Ratio (B-PR) Distribution (RQ2).

0.8

0.6

0.4

0SS Patch Ratio

0.2

F

0.0

P = = =
EZCEFEogEEe PS50 7598E
228z " 2E32¢55g 7S5 5FsSE=2gE3=E¢g
T & 22 5>2%8 g8 a8 2 2 28 5] ma=
SEF > g<2°7 5 & o o 3 - g =
= & 1. 2 f=Ne]

] g =2 Eilad
B g &
s
E
Software

Figure 4: OSS Patch Ratio (OSS-PR) Distribution (RQ2).

® Per OSS Perspective. We define OSS Patch Ratio (OSS-PR) to
measure the overall status of patch management on all the stable
branches in an OSS project.

>, B—PRof all stable branches in this OSS
of stable branches in this OSS

As shown in Figure 4, the OSS-PR varies significantly, demon-
strating a mixed picture of security patch management practice
among different OSS projects. MongoDB and Wireshark have an
OSS-PR close to 1 and Suricata has an OSS-PR over 0.8. However,
the OSS-PRs for the remaining 23 projects are all below 0.6. Our
results motivate the developers of these OSS projects to pay more
attention to security patch management across stable branches.

OSS-PR =

Finding 3. Security patch management across stable branches
varies considerably from software to software. The OSS-PRs
are below 60% for 23 out of 26 OSS projects, while only 3
projects have OSS-PRs above 80%. From the perspective of
stable branches, 72.24% of the stable branches have B-PRs
below 50%, indicating that most branches are poorly main-
tained. Besides, we observe polarized distribution in the CVE-
PR, indicating that some CVEs are patched well across stable
branches, but some are poorly managed.

4.3 Unpatched Branches (RQ3)

Through our study, we find a large part of stable branches have
not been patched yet for some CVEs, making the users of these
software versions at risk. We intend to uncover why these branches
are not patched and what security threats are posed to users.

Reasons for Not Patching. We investigate all the CVE-Branch
pairs that have not been patched and conclude two primary reasons.

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

Table 2: Distribution of Reasons for Not Patching (RQ3).

Language #CVE-Branch pairs R1 R2
C 4,925 4,631 (94.03%) 294 (5.97%)
C++ 1,551 1,156 (74.53%) 395 (25.47%)
Java 283 262 (92.58%) 21(7.42%)
PHP 1,622 1,469 (90.57%) 153 (9.43%)
Python 486 478 (98.35%) 8 (1.65%)
Total 8,867 7,996 (90.18%) 871 (9.82%)

® RI: out of maintenance branch. Though the stable branch is vul-
nerable to the CVE, the branch is out of maintenance when the
vulnerability is disclosed.

® R2: patch management failure. The stable branch is vulnerable to
the CVE and is still maintained at the vulnerability disclosure.
However, the corresponding patch is not applied to the stable
branch due to poor patch management.

For a given unpatched CVE-Branch pair, the reason for it being
unpatched can be pinpointed by analyzing the maintenance time of
the stable branch. Specifically, we obtain the disclosure time of CVE
from the CVE website. If the disclosure time is later than the last
commit of the stable branch, we attribute the patch is not applied
due to out of maintenance branch. Otherwise, if the disclosure time
is earlier than the last commit, we attribute the patch is not applied
due to patch management failure.

Following the above categorization, we analyze the reasons
for the 8,867 unpatched CVE-branch pairs, and present their not-
patched reasons in Table 2. Regardless of the programming lan-
guage, over 70% of unpatched CVE-branch pairs are caused by
out-of-maintenance branches. Especially, the percentage in Python
even reaches 98.35%.

Finding 4. Though a lot of branches are stable branches, they
are actually out of maintenance when some vulnerabilities
are disclosed, causing 90.18% of unpatched CVE-branch pairs.

Failures in patch management also led to a considerable number
of unpatched CVE-branch pairs (around 10%). We further analyze
the scope of these patch management failures. As shown in Table 3,
patch management failures are a common phenomenon, which
occurs in 80.77% of software. In Python, only a small number of
stable branches (9.09%) are properly managed. Whereas in C++,
patch management failures can be found in 59% of stable branches.

Finding 5. The patch management failure occurs in a consid-
erable number of OSS (80.77%).

Table 3: Distribution of Patch Management Failures (RQ3).

#Patch Management #Involved #Involved Stable #Involved

Language Failures CVEs Branches 0SS
C 294 122 (31.85%) 72(28.12%) 10 (90.91%)
Cr+ 395 39 (54.17%) 70 (59.32%) 2 (66.67%)
Java 21 18 (30.00%) 7(21.21%) 2 (100.00%)
PHP 153 44 (21.15%) 35 (32.41%) 5(71.43%)
Python 8 7 (8.43%) 4(9.09%) 2 (66.67%)
Total 871 230 (28.54%) 188 (33.63%) 21 (80.77%)

Tan and Zhang, et al.

Concerns of Patch Management Failure. Since users prefer to
fetch OSS projects from stable branches that are still under main-
tenance, patch management failures on stable branches are more
likely to expose users to security threats. We try to infer the factors
that cause the 230 not-fully-patched CVEs (see column 3 of Table 3)
due to patch management failures from three aspects: vulnerabil-
ity type, vulnerability severity and vulnerability exploitation. In
particular, we use the CWE and CVSS Score in the NVD as the
vulnerability type and vulnerability severity information respec-
tively. To assess the likelihood of a vulnerability being exploited,
we manually collect the PoCs for these 230 CVEs with the search
engine. We present the overall results in Table 4.

Table 4: Statistics of the Unpatched CVEs (RQ3).

#Unpatched Avg. CVSS Median CVSS #Published

L #
anguage CVEs CWEs Score Score PoCs
C 122 29 6.85 6.50 23
C++ 39 24 7.81 7.50 1
Java 18 10 5.39 4.85 0
PHP 44 19 7.06 6.50 22
Python 7 4 6.77 6.50 0
Total 230 54 6.93 6.50 46

© Vuinerability Type. As shown in Table 4, these unpatched CVEs
cover a wide spectrum of vulnerability types. In addition, we find
that the vulnerability type is naturally related to programming
language. As shown in Table 9 (in Appendix), the top 5 vulnera-
bility types for each language vary greatly and some of them may
lead to serious consequences. For example, in C++, the top two
vulnerability types are Out-of-bounds Read (CWE-125) and Out-
of-bounds Write (CWE-787) which can be leveraged to bypass the
ASLR protection or perform control flow hijacking.

® Vulnerability Severity. From Table 4, we find the average CVSS
Score for the unpatched CVEs is 6.93 (7.0 is the bar for high-severity
vulnerabilities in CVSS Score). We also present the severity distribu-
tion of these CVEs in Figure 5 (in Appendix). It shows that 33.48% of
the unpatched CVEs belong to high severity (7.0-8.9) and 13.91% of
them belong to critical severity(9.0-10.0). Surprisingly, we find the
vulnerability severity of these unpatched CVEs is related to their
programming language. As shown in Table 4, the average CVSS
Score of unpatched CVEs in C++ and PHP is higher than 7.0, far
exceeding that of Java.

® Vulnerability Exploitation. We are surprised to find that we can
successfully find PoCs for 46 CVEs (as shown in Table 4), by taking
only 12 man-hours. This means that attackers are able to attack
applications that are built upon these unpatched stable branches at
alow cost.

Finding 6. 47.39% of the vulnerabilities that are not patched
on all affected stable branches are of high or critical severity.
For 46 (20%) of these unpatched vulnerabilities, there are
publicly available PoCs.

4.4 Patched Branches (RQ4)

We conduct another study to understand the patch porting process
across stable branches in OSS, especially, the efforts required for

Understanding the Practice of Security Patch Management across Multiple Branches in OSS Projects

developers during patch porting. To perform this study, we identify
the original patch developed for each CVE and the patches that
were ported to the other branches. Considering that patches are not
always firstly developed on the mainline, we identify the first patch
for each CVE according to the commit dates in the code repository
of all its patches (on different branches). Among the remaining
patches, some of them are directly inherited from the first patch via
code forking, meaning they have the same commit ID as the first
patch; the others are patches that are ported by developers. In all,
we find 526 CVEs who have at least one ported patch, and collect
1,695 ported patches to study.

Patch Porting Delay. We calculate the patch porting delay of a
vulnerability as the delta between the commit date of the original
patch and that of the last ported patch. Figure 6 (in Appendix) shows
the cumulative distribution function (CDF) for the patch porting
lag (in days). From this figure, we find that 7.79% of CVEs may take
more than six months to port patches. These long patching delays
greatly extend the attack window for these vulnerabilities.

Table 5 presents the patch porting delays for vulnerabilities in
different languages. From this table, we find that patch porting takes
less than 4 days for PHP and Python, while more than 37 days in C
and C++. We guess that Python and PHP developers take a more
proactive attitude and more actions on patching vulnerabilities.
Even worse, Java developers take an average of 223.75 days to
finish the patch porting. We find the long patching delay of Java is
mainly caused by Jackson Databind [9]. The developers of Jackson-
Databind prefer to port several patches together to a stable branch
in a single commit, sometimes delaying approximately one year
after the patches are developed. These results indicate that OSS
development teams should pay more attention to the patch porting
process, especially for Java, C, and C++ projects.

Table 5: Statistics of Patch Porting Delay (RQ4).

Lansuage Avg. Median Max.
guag Porting Lag Porting Lag Porting Lag

C 51.04 5.0 1,109
C++ 37.55 7.0 366
Java 223.75 194.5 632
PHP 3.74 0.0 157
Python 2.71 0.0 49

Total 40.46 1.0 1,109

Finding 7. For 23.19% of CVEs, it takes more than 30 days to
complete the patch porting on stable branches, which greatly
increases the possibility of being attacked.

Patch Porting Mode. By analyzing the ported patches, we observe

two different modes in porting patches.

o Mode-I: one patch at a time. The developers port one security
patch in a code commit.

o Mode-II: multiple patches at a time. The developers port multiple
security patches together in a single commit.

We manually classify all the ported patches into these two modes

and present the results in Table 6. Mode-II patch porting is only

observed in C++, Java and PHP. We find that the patch porting

mode affects the patch porting delay. In PHP, developers generally

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

Table 6: Distribution of Patch Porting Mode (RQ4).

Lansuage Mode-I Mode-II
BUABE Count Avg. Lag Mdn. Lag Count Avg. Lag Mdn. Lag

C 872 34.21 3.0 0 / /
C++ 220 15.42 0.0 4 50.00 50.0
Java 8 76.25 62.0 7 336.43 326.0
PHP 457 0.84 0.0 47 0.00 0.0

Python 80 2.29 0.0 0 / /
Total 1,637 21.01 0.0 58 44.05 0.0

perform well in patch management, so there is no significant dif-
ference between the two modes. However, for C++ and Java, the
patch porting lags of Mode-II are 3.2 and 4.4 times higher than those
of Mode-I, respectively. This is because PHP developers typically
merge and port multiple patches on a daily basis, while C++ and
Java developers port multiple patches at longer intervals, greatly
increasing the time delay in porting the earlier developed patches
to other branches.

Patch Porting Efforts. During the patch porting, sometimes the
patch can not be directly applied which requires the developers
to adjust the original patch a little. To understand the efforts that
developers might put in porting patches, we compare the code
between the original patch and the ported ones. We find that 82.36%
of the ported patches (1,396 patches) are different from the original
patches, while the other ported patches are exactly the same as the
original ones in the code diff. We further study what kinds of code
modifications should the developers make during patch porting. By
reviewing these 1,396 ported patches, we find developers need to
make four types of code changes.

o Type-I: adjust patch positions. When porting a patch to a given
branch, the vulnerable code may be in a different file, a different
function, or different code lines. As a result, the developers need
to adjust the position of the patch statements to apply the patch.
Type-II: fit code context. When the context of the vulnerable code
on a branch differs from that of the patch-developed branch,
directly applying the original patch may lead to semantic or
syntax errors. Fortunately, the differences in this scenario do not
require adjusting the vulnerability fix logic. The developers just
need to modify the patch to fit a new code context, such as using
the new namespace.

Type-1II: change fix logic. The code differences between the ported
branch and the original patch-developed branch require adjusting
the vulnerability fix logic.

Type-1V: irrelevant changes. There are some irrelevant changes to
vulnerability fixing, such as modifying comments and indents.
These changes are not necessary during the patch porting.

Table 7 present the detailed results about the patch porting efforts.
Note that there may be more than one type of changes made in a
single patch. In 67.55% of ported patches, developers just need to
adjust the positions of the patch statements without adjusting the
vulnerability fixing logic. In 8.38% of patches, developers need to
pay more effort in carefully adapting the original patch to fit the
new code context. In 9.85% of patches, developers have to adjust the
vulnerability fix logic due to the great code differences between two
branches, which requires the most significant efforts. According to
our inspection, Type-I changes are easy to automate while Type-II

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

Table 7: Code Change Types in Ported Patches (RQ4).

Code Change Type Count Percentage
Type-I 1,145 67.55%
Type-II 142 8.38%
Type-III 167 9.85%
Type-1V 653 38.53%

changes and Type-III changes are the two major challenges in patch
porting. Our study motivates future research to ease these kinds of
code changes in the patch porting process.

Finding 8. During patch porting, developers usually have
to make necessary code changes to adopt the original patch.
The major efforts during this process include adjusting patch
positions, fitting code context and changing fix logic.

5 DISCUSSION

Limitations. There might be two limitations in our study. First,
during the dataset collection, we assume the affected versions listed
by NVD are correct and subsequently locate patches on the corre-
sponding affected branches. However, recent works [17, 30] show
that the affected versions provided by CVE/NVD are sometimes
incorrect. The incorrect information may affect our study in two
ways: 1) our dataset may have missed some affected stable branches;
and 2) the branches that we have not located security patches may
be not vulnerable. To the best of our knowledge, locating all affected
versions of a specific vulnerability is still an open problem [16]. Sec-
ond, if a vulnerability is reported when a stable branch is about to
go out-of-maintenance, the project maintainers may intentionally
choose to port the patch to the next branch rather than the to-be-
out-of-maintenance branch. However, in §4.3, we cannot further
investigate whether a patch management failure is intentional or
unintentional, due to the lack of information about the maintenance
decision process within the developer team. Nevertheless, we argue
that either intentional or unintentional patch management failures
pose security risks to end-users and should be avoided.

Suggestions. To improve the current poor status of security patch
deployment, both the developers and the security community should
pay more attention. Based on our study, we have the following sug-
gestions. First, in §4.3, we find that some vulnerabilities are not
patched probably because of management failures. Thus, we sug-
gest that a patch deployment status monitoring mechanism should
be established to avoid such failures. Second, as introduced in §4.4,
patch porting is time-consuming and laborious, causing delays in
patch deployment. To facilitate the patch porting process, auto-
mated patch porting tools [36, 38, 39, 42] should be incorporated
and continuously improved.

6 RELATED WORK

Bug-fixing Commits Identification. Identifying bug-fixing com-
mits is a well-received topic in mining software repositories (MSR).
Firstly, Mockus and Votta [29] and Ray et al. [35] leverage keyword
matching to recognize bug-fixing commits. Further, more features
are considered by Wu et al. [48] and Sun et al. [40], such as the
developer and the message of the commit. Recently, machine learn-
ing [43] and deep learning [21-23] have also been used to identify

Tan and Zhang, et al.

bug-fixing commits. In this paper, we aim to identify security patch
commits of a specific vulnerability, which is somehow similar to
identify the fixing commits of a bug report [40, 48]. Our approach
is inspired by these works.

Security Patch Identification. Existing works make many at-
tempts to identify security patches, i.e., a type of bug-fixing commits
in the source code repository. Wang et al. [45] leverage machine
learning while SPIDER [26] uses symbolic interpretation to classify
safe patches and identifies security patches from them. Recently,
Tan et al. [41] use a ranking method to locate the security patches for
a specific vulnerability. By proposing a nearest link search method,
Wang et al. [46] construct a large-scale patch database. In this paper,
a semi-automatic method is proposed to facilitate the collection of
security patches for a specific CVE on all affected stable branches
rather than a or several branch(es).

Patch Lifecycle Analysis. Several studies have been conducted
to measure the lifecycle of security patches. In particular, Li et
al. [25], Shahzad et al. [37] and Frei et al. [19] perform patch studies
on various OSS projects while Farhang et al. [18] target the An-
droid system. Zheng et al. [49], Jiang et al. [24] and Dai et al. [15]
study the patch propagation from Android upstream code repos-
itory (AOSP) to downstream vendors. Those works either focus
on patch management on the mainline itself or concern the patch
management between the upstream and the downstream, while
this paper uniquely investigates the problem of patch management
across multiple stable branches inside OSS projects.

7 CONCLUSION

In this paper, we conduct a large-scale empirical study of security
patch management practice across multiple stable branches in OSS
projects, with 806 vulnerabilities and 608 stable branches from 26
OSS projects. We uncover the poor patch management status in
OSS projects and obtain many useful findings. In particular, over
80% of CVE-Branch pairs are not patched. About 90% unpatched
stable branches are due to out-of-maintenance and the remaining
10% are caused by patch management failures. We also investigate
the patch porting process, to shed light on the challenges and the
required efforts in patch porting. Based on our study, we call for the
OSS community to improve the current security patch management
practice, probably by applying automated patch porting tools and
establishing a mechanism to monitor patch deployment status.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their insightful
comments. This work was supported in part by the National Natu-
ral Science Foundation of China (U1836210, U1836213, 62172105,
61972099, 62172104, 62102091, 62102093), Natural Science Founda-
tion of Shanghai (19ZR1404800). Yuan Zhang was supported in part
by the Shanghai Rising-Star Program under Grant 21QA1400700.
Kun Sun is supported by U.S. ARMY grant W56KGU-20-C-0008 and
U.S. NAVY grant N00014-20-1-2407. Min Yang is the corresponding
author, and a faculty of Shanghai Institute of Intelligent Electronics
& Systems, Shanghai Institute for Advanced Communication and
Data Science, and Engineering Research Center of CyberSecurity
Auditing and Monitoring, Ministry of Education, China.

Understanding the Practice of Security Patch Management across Multiple Branches in OSS Projects

REFERENCES

[10
[11
[12]
[13]
[14]

2010. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.

2016. Syzkaller. https://github.com/google/syzkaller.

2018. syzbot dashboard. https://syzkaller.appspot.com/upstream.

2021. Bigtree CMS. https://www.bigtreecms.org/.

2021. Bigtree CMS release cycle. https://www.bigtreecms.org/developers/dev-
guide/release-cycle/.

2021. github. https://github.com/.

2021. HHVM. https://hhvm.com/.

2021. HHVM release policy. https://docs.hhvm.com/hhvm/FAQ/faq.

2021. Jackson databind. https://github.com/FasterXML/jackson-databind.
2021. OpenEMR. https://www.open-emr.org/.

2021. phpMyAdmin. https://www.phpmyadmin.net/.

2021. QEMU. https://www.qemu.org/.

2021. Semantic Versioning 2.0.0. https://semver.org/.

MITRE Corporation. 2021. CWE: Common Weakness Enumeration.
//cwe.mitre.org/.

https:

[15] Jiarun Dai, Yuan Zhang, Zheyue Jiang, Yingtian Zhou, Junyan Chen, Xinyu

[16]

[17]

(18]

[23]

[24

[25

[26]

[27]

™
&

[29

Xing, Xiaohan Zhang, Xin Tan, Min Yang, and Zhemin Yang. 2020. BScout:
Direct Whole Patch Presence Test for Java Executables. In 29th USENIX Security
Symposium (USENIX Security).

Jiarun Dai, Yuan Zhang, Hailong Xu, Haiming Lyu, Zicheng Wu, Xinyu Xing, and
Min Yang. 2021. Facilitating Vulnerability Assessment through PoC Migration. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security.

Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and Gang Wang.
2019. Towards the Detection of Inconsistencies in Public Security Vulnerability
Reports. In Proceedings of the 28th USENIX Security Symposium (USENIX Security).
Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka, and Jens Grossklags. 2019.
Hey google, what exactly do your security patches tell us? a large-scale empirical
study on android patched vulnerabilities. arXiv preprint arXiv:1905.09352 (2019).
Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. 2006. Large-
Scale Vulnerability Analysis. In Proceedings of the 2006 SIGCOMM Workshop on
Large-Scale Attack Defense (LSAD).

Google. 2016. OSS-Fuzz. https://github.com/google/oss-fuzz.

Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. 2020. CC2Vec: Dis-
tributed Representations of Code Changes. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (ICSE).

Thong Hoang, Julia Lawall, Richard J. Oentaryo, Yuan Tian, and David Lo.
2019. PatchNet: A Tool for Deep Patch Classification. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion).

Thong Hoang, Julia Lawall, Yuan Tian, Richard J. Oentaryo, and David Lo. 2021.
PatchNet: Hierarchical Deep Learning-Based Stable Patch Identification for the
Linux Kernel. IEEE Transactions on Software Engineering (TSE) (2021).

Zheyue Jiang, Yuan Zhang, Jun Xu, Qi Wen, Zhenghe Wang, Xiaohan Zhang,
Xinyu Xing, Min Yang, and Zhemin Yang. 2020. PDiff: Semantic-based Patch
Presence Testing for Downstream Kernels. In Proceedings of the 27th ACM SIGSAC
Conference on Computer and Communications Security (CCS).

Frank Li and Vern Paxson. 2017. A Large-Scale Empirical Study of Security
Patches. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS).

Aravind Machiry, Nilo Redini, Eric Camellini, Christopher Kruegel, and Giovanni
Vigna. 2020. SPIDER: Enabling Fast Patch Propagation In Related Software
Repositories. In Proceedings of the 41th IEEE Symposium on Security and Privacy
(S&P).

Robert K Merton. 1968. The Matthew effect in science: The reward and commu-
nication systems of science are considered. Science (1968).

Robert K Merton. 1988. The Matthew effect in science, II: Cumulative advantage
and the symbolism of intellectual property. isis (1988).

Mockus and Votta. 2000. Identifying reasons for software changes using his-
toric databases (ICSM). In Proceedings 2000 International Conference on Software

[30

'©
)

[36

(37]

[38

[39

=
=

[41

[42

[43

[44

=
i)

[46

[47

[48

N
)

WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

Maintenance.

Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing Mao,
and Gang Wang. 2018. Understanding the Reproducibility of Crowd-reported
Security Vulnerabilities. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security).

U.S. National Institute of Standards and Technology. 2021. National Vulnerability
Database. https://nvd.nist.gov/home.cfm.

U.S. National Institute of Standards and Technology. 2021. NVD Data Feed.
https://nvd.nist.gov/vuln/data-feeds.

U.S. National Institute of Standards and Technology. 2021. NVD Specific CVSS
Information. https://nvd.nist.gov/vuln-metrics/cvss.

U.S. National Institute of Standards and Technology. 2021. Official Common
Platform Enumeration Dictionary. https://nvd.nist.gov/products/cpe.
Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.

A Large Scale Study of Programming Languages and Code Quality in Github. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering. 155-165.

Luis R. Rodriguez and Julia Lawall. 2015. Increasing Automation in the Back-
porting of Linux Drivers Using Coccinelle. In 2015 11th European Dependable
Computing Conference (EDCC).

Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu. 2012. A
large scale exploratory analysis of software vulnerability life cycles. In 34th
International Conference on Software Engineering (ICSE).

Ridwan Shariffdeen, Xiang Gao, Gregory J. Duck, Shin Hwei Tan, Julia Lawall, and
Abhik Roychoudhury. 2021. Automated Patch Backporting in Linux (Experience
Paper). In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA).

Youkun Shi, Yuan Zhang, Tianhan Luo, Xiangyu Mao, Yinzhi Cao, Ziwen Wang,
Yudi Zhao, Zongan Huang, and Min Yang. 2022. Backporting Security Patches
of Web Applications: A Prototype Design and Implementation on Injection
Vulnerability Patches. In 31th USENIX Security Symposium (USENIX Security).
Yan Sun, Qing Wang, and Ye Yang. 2017. FRLink: Improving the recovery of
missing issue-commit links by revisiting file relevance. Information and Software
Technology (2017).

Xin Tan, Yuan Zhang, Chenyuan Mj, Jiajun Cao, Kun Sun, Yifan Lin, and Min
Yang. 2021. Locating the Security Patches for Disclosed OSS Vulnerabilities
with Vulnerability-Commit Correlation Ranking. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (CCS).

Ferdian Thung, Xuan-Bach D. Le, David Lo, and Julia Lawall. 2016. Recommend-
ing Code Changes for Automatic Backporting of Linux Device Drivers. In 2016
IEEE International Conference on Software Maintenance and Evolution (ICSME).
Yuan Tian, Julia Lawall, and David Lo. 2012. Identifying Linux Bug Fixing Patches.
In Proceedings of the 34th International Conference on Software Engineering (ICSE).
Tom Walker. 2021. 20 Most Popular Open Source Software Ever. https://www.
tripwiremagazine.com/20-most-popular-open-source- software-ever-2/.

Xinda Wang, Kun Sun, Archer Batcheller, and Sushil Jajodia. 2019. Detecting
"0-Day" Vulnerability: An Empirical Study of Secret Security Patch in OSS. In
Proceedings of the 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN).

Xinda Wang, Shu Wang, Pengbin Feng, Kun Sun, and Sushil Jajodia. 2021.
PatchDB: A Large-Scale Security Patch Dataset. In 51st Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN).
WhiteSource. 2021. The State of Open Source Vulnerabilities 2021.
https://www.whitesourcesoftware.com/resources/blog/2021- state-of-open-
source-security-vulnerabilities- cheat- sheet/.

Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. ReLink:
Recovering Links between Bugs and Changes. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering (FSE/ESEC).

Zheng Zhang, Hang Zhang, Zhiyun Qian, and Billy Lau. 2021. An Investigation
of the Android Kernel Patch Ecosystem. In 30th USENIX Security Symposium
(USENIX Security).

https://lcamtuf.coredump.cx/afl/
https://github.com/google/syzkaller
https://syzkaller.appspot.com/upstream
https://www.bigtreecms.org/
https://www.bigtreecms.org/developers/dev-guide/release-cycle/
https://www.bigtreecms.org/developers/dev-guide/release-cycle/
https://github.com/
https://hhvm.com/
https://docs.hhvm.com/hhvm/FAQ/faq
https://github.com/FasterXML/jackson-databind
https://www.open-emr.org/
https://www.phpmyadmin.net/
https://www.qemu.org/
https://semver.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://github.com/google/oss-fuzz
https://nvd.nist.gov/home.cfm
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/products/cpe
https://www.tripwiremagazine.com/20-most-popular-open-source-software-ever-2/
https://www.tripwiremagazine.com/20-most-popular-open-source-software-ever-2/
https://www.whitesourcesoftware.com/resources/blog/2021-state-of-open-source-security-vulnerabilities-cheat-sheet/
https://www.whitesourcesoftware.com/resources/blog/2021-state-of-open-source-security-vulnerabilities-cheat-sheet/

WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

A APPENDIX

Table 8: Heuristic Rules Used in the Semi-automated
Method for Potential Patch Commits Locating.

s Manual
Rule Description .
Inspection
The commit and the reference commit have the same commit ID. No
The commit shares the same code diff with the reference commit. No
The commit shares the same commit title with the reference commit and N
has over 90% of the same lines in the code diff with the reference commit. °
The commit mentions the commit ID of the reference commit and has N
over 90% of the same lines in the code diff with the reference commit. °
The commit shares the same commit title with the reference commit. Require

Both the commit and the reference commit mention the same commit ID. Require

The commit mentions the commit ID

e . Require
of the reference commit in the commit message. q

The commit has more than 40% of the same lines

in the code diff with the reference commit. Require

Both the commit and the reference commit mentions the same Bug-ID. Require

The commit mentions the CVE-ID of the

vulnerability which the reference commit fixes. Require

Table 9: The Top 5 Vulnerability Types for Not-fully-patched
CVEs due to Patch Management Failures (RQ3).

Language 1st Type 2nd Type 3rd Type 4th Type 5th Type

C CWE-401 CWE-835 CWE-125 CWE-787 CWE-416
C++ CWE-125 CWE-787 CWE-20 CWE-522 CWE-119
Java CWE-200 CWE-502 CWE-79 CWE-863 CWE-326
PHP CWE-79 CWE-89 CWE-862 CWE-918 CWE-326

Python CWE-732 CWE-125 CWE-862 CWE-287 /

Tan and Zhang, et al.

23.04%
21.74%

19.13%

13.91%

10.00% 10.43%

1.74%

6 7
CVSS Score

Figure 5: Distribution of CVSS Severity Scores (RQ3).

0.0

0 30 60 90 120 150 180 210 240 270 300 330 360
Patch Porting Lag (day)

Figure 6: Cumulative Distribution of Patch Porting Delay
(RQ4).

Understanding the Practice of Security Patch Management across Multiple Branches in OSS Projects WWW ’22, April 25-29, 2022, Virtual Event, Lyon, France

Table 10: The OSS and Vulnerability Dataset for the Study (column 7 and column 8 represents the average number of code
commits and the average maintenance time for all collected stable branches in each OSS, respectively).

Software Application Type #Stable- #CVEs Language Stars # Code Maintenance
Branches selected Commits Duration (Days)

Linux kernel Operating System Kernel 84 50 C 119k 3,037.82 393.21
Wireshark Network Traffic Analyzer 14 50 C 3.7k 850.57 754.64
FFmpeg Multimedia Content Processor 29 49 C 26.4k 624.31 1,065.28
QEMU Emulator 33 37 C 5.3k 113.85 77.94
Xen Virtual Machine Monitor 16 33 C 358 471.62 981.56
glibc GNU C Library 24 30 C 603 88.17 691.92
Samba Windows Interoperability Suite 20 30 C 598 1,440.35 721.10
OpenSSL TLS/SSL and Crypto Library 8 29 C 16.6k 1,738.25 2,839.62
ClamAV Antivirus Engine 8 27 C 1.6k 171.88 578.00
PostgreSQL Object-relational Database 25 26 C 9k 1,031.36 1,479.52
Suricata Threat Detection Engine 5 22 C 2.2k 227.40 419.40
HHVM Virtual Machine 107 27 C++ 17.1k 19.56 71.09
Ceph Distributed Storage System 13 24 C++ 9.7k 737.69 822.31
MongoDB Document-oriented Database 20 21 C++ 20.5k 785.60 644.55
Jenkins Automation Server 24 30 Java 17.9k 34.75 106.38
Jackson Databind | Data-binding Package 14 30 Java 2.9k 206.43 901.57
WordPress Content Management System 39 42 PHP 15.5k 162.08 1,082.21
Dolibarr ERP and CRM 24 30 PHP 2.7k 474.83 798.71
OpenEMR Medical Practice Management 14 30 PHP 1.7k 85.86 245.43
GLPI Asset and IT Management 14 28 PHP 2.2k 439.21 620.07
phpMyAdmin Administration Tool 6 27 PHP 5.7k 849.17 496.83
Piwigo Photo Gallery Software 17 26 PHP 1.6k 145.06 662.18
BigTree CMS Content Management System 4 25 PHP 193 315.25 609.25
Django Web Framework 22 32 Python 60k 530.55 780.09
Pillow Python Imaging Library 16 29 Python 9k 11.62 40.88
Zulip Group Chat Application 8 22 Python 14.3k 74.62 220.00

	Abstract
	1 Introduction
	2 Background
	3 Data Collection
	4 Study
	4.1 Stable Branches (RQ1)
	4.2 Patch Deployment Status (RQ2)
	4.3 Unpatched Branches (RQ3)
	4.4 Patched Branches (RQ4)

	5 Discussion
	6 Related work
	7 Conclusion
	References
	A Appendix

