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Abstract
With the increasing popularity of containerized applications,
container registries have hosted millions of repositories that
allow developers to store, manage, and share their software.
Unfortunately, they have also become a hotbed for adversaries
to spread malicious images to the public. In this paper, we
present the first in-depth study on the vulnerability of con-
tainer registries to typosquatting attacks, in which adversaries
intentionally upload malicious images with an identification
similar to that of a benign image so that users may acciden-
tally download malicious images due to typos. We demon-
strate that such typosquatting attacks could pose a serious
security threat in both public and private registries as well
as across multiple platforms. To shed light on the container
registry typosquatting threat, we first conduct a measurement
study and a 210-day proof-of-concept exploitation on public
container registries, revealing that human users indeed make
random typos and download unwanted container images. We
also systematically investigate attack vectors on private reg-
istries and reveal that its naming space is open and could be
easily exploited for launching a typosquatting attack. In addi-
tion, for a typosquatting attack across multiple platforms, we
demonstrate that adversaries can easily self-host malicious
registries or exploit existing container registries to manipulate
repositories with similar identifications. Finally, we propose
CRYSTAL, a lightweight extension to existing image manage-
ment, which effectively defends against typosquatting attacks
from both container users and registries.

1 Introduction
Container technology such as Docker has been widely

adopted in cloud computing [1–4], edge computing [5], high-
performance computing [6], and serverless computing [7, 8]
for its favorable multi-tenancy isolation [9], near-native perfor-
mance [10], and excellent support on continuous integration/-
continuous delivery (CI/CD) [11]. One of the distinct features
is that Docker wraps applications and their dependencies (e.g.,
code, runtime, system tools and libraries) into an image, en-
abling fast software delivery and easy portability. This attracts

developers to publish images on container registries for main-
taining and managing images. Many enterprises, including
Docker Hub, Google, and Amazon, provide container registry
services targeting both open-source community and private
software developers. For example, Docker Hub, one of the
largest container registries in the market, maintains hundreds
of terabytes of data with a growing rate of about 1,500 new
public repositories (i.e., one or more versions of a specific
Docker image) daily [12].

With the ever-increasing demand of container services, se-
curity incidents inevitably exist in container registries. Users
might immediately suffer various attacks if they download
and execute malicious container images. It has been reported
that 60% of the organizations utilizing containers are affected
by container security issues [13]. In 2018, Docker Hub uncov-
ered 17 malicious images containing backdoors for mining
cryptocurrency using a victim’s system [14]. These images
attract more than 5 million pull counts, accumulating approx-
imately $90,000 worth of cryptocurrency for attackers. Palo
Alto Networks [15] has reported 117 unsecured container reg-
istries on the market, allowing unauthorized push, pull, and
delete operations on their hosted repositories. Adversaries
can also infect victims’ systems by deploying images with
malicious code or directly downloading malicious software
during runtime [16].

One prerequisite for the threats above is that adversaries
need to trick users to download malicious images on registries.
This is not a simple task, as registries (e.g., Docker Hub) often
rank the images based on the download counts, and users also
tend to pull those popular images. However, we reveal a new
vulnerability that adversaries can exploit to easily distribute
malicious images at a low cost by abusing the typosquatting
in container registries. In particular, container registries utilize
a fully qualified image identification (FQID) to identify an
image. Users also rely on this unique identity to pull images
from registries. Adversaries can create an FQID similar to
those of benign images, and then users could accidentally
download malicious images if they make a typo. Such a ty-
posquatting attack on popular images could pose a serious



threat of spreading malicious container images.
In this paper, we systematically investigate the feasibility

of launching typosquatting attacks on container registries in
three scenarios: public registries, private registries, and across
platforms. To form the basis, we first conduct a measurement
study on two widely used public registries, Docker Hub and
Quay.io, to understand the existing image naming mechanism.
We discover that tens of thousands of repositories have re-
markably similar FQIDs, implying that the current naming
system of container registries is vulnerable to typosquatting.
To demonstrate the severity of typosquatting, we further con-
sider five types of common typosquatting and upload about
4,000 typosquatting images targeting 10 usernames in Docker
Hub with the approval from the Internal Review Board (IRB)
of our institution. We observe that our typosquatting images
are constantly downloaded by users, and attract more than
40,000 pull counts by the end of a 210-day experiment. Mean-
while, out of 10 targeted users, only one user’s typosquatting
images (contributing 3,867 downloading counts) are deleted
by the Docker Hub on day 105. Such an observation indi-
cates that typosquatting attacks pose a serious threat to public
registries.

We further uncover attack vectors in private registries, ex-
ploiting the image management policy adopted by five large
private registries. The typosquatting attacks might happen
involving both the project-ID (e.g., username) of the image
identification and the region code defined by each registry. We
find that most existing private registries allow users to directly
name their repositories, and thus adversaries can intentionally
upload images with the exact same image name but typosquat
their project-IDs similar to that of an existing repository. We
also conduct a 60-day experiment demonstrating that the ty-
posquatting attacks could pose security threats to private reg-
istries. In addition, the typosquatting attack might also occur
across different registries. Particularly, users may uninten-
tionally obtain container images from undesired registries
when they mistype or forget to provide the hostname of the
image FQIDs. Adversaries can then exploit it by registering
typosquatting domain names and host malicious registries.

Finally, we propose a lightweight defense system named
CRYSTAL (Container RegistrY SquaTting ALarm) to mit-
igate the container registry typosquatting threat from both
registry and user sides. Specifically, CRYSTAL can be used
on the registry end to detect potentially conflicting user-
names. Based on the detection result, registries can prevent
co-existence of similar usernames. The same process can also
be utilized on the user end to inform users about the potential
conflicting and typosquatting image names by executing an
FQID comparison and keyword search prior to the download-
ing process. It enables users to further confirm the FQIDs of
their desired images. We develop a prototype on the user end
based on top of the Docker pull command and evaluate the
tool on Docker Hub. The evaluation results show that CRYS-
TAL can achieve high accuracy with minimal overhead.

2 Background

2.1 Container Registry
Container registry serves as a centralized storage that al-

lows many users to facilitate, manage, and share their images.
In this paper, we focus on Docker containers where users
interact with a registry by using the Docker Command-Line
Interface (CLI). Particularly, for downloading container im-
ages, users issue the Docker pull command followed by the
FQID of the desired image from a configured registry.

Typically, an FQID consists of three major fields: host-
name, username (also referred to as project-ID), and image
name, with the format of example.com/username/image. The
hostname is defined by the container registry to distinguish
the hosting server. It contains a mandatory domain name of
the hosting registry and some additional information, such as
region code and account ID. Docker Hub is the default reg-
istry used by the Docker CLI. If the hostname is not specified
in the FQID, users will interact with Docker Hub directly. A
username (project-ID) serves as a unique collection of image
repositories established by users. When downloading a con-
tainer image from a registry, a user should provide the correct
FQID of the desired image.

Public Registry. Public registries, such as Docker Hub
and Quay.io, usually provide unlimited image storage for free
as long as the repositories are publicly accessible. Public
registries require developers to provide unique usernames
when registering their accounts. Users can then upload Docker
images under their unique usernames. By default, uploaded
images are set as public repositories and are free to download
by any users without any authentication or authorization.

Private Registry. Private registries have different reposi-
tory management policies. In private registries, account own-
ers are charged based on the amount of storage used to host
their images and the network bandwidth for both uploading
and downloading container images. Usually, each account
contains one or more project-IDs (similar to usernames), in
which developers can further establish image repositories.
The account owner can authorize other users to download
or modify the repositories. Some private registries also al-
low developers to make their repositories publicly available,
allowing access to the image without any authentication or
authorization.

2.2 Typosquatting
Originally, typosquatting refers to a URL hijacking attack

targeting Internet users who make typing mistakes when in-
putting domain names [17]. While significant efforts have
been devoted to understanding domain name typosquat-
ting [18, 19], the current definition of typosquatting has been
expanded to include more scenarios sharing similar attack be-
haviors and characteristics, such as email typosquatting [20]
and mobile app typosquatting [21].



Squatting Type Example
Duplication (AD) alice ï aliice
Deletion (DE) alice ï alie
Permutation (SW) alice ï ailce
Misinterpretation (MI) alice ï a1ice
Fat-Finger (FF) alice ï alic3

Table 1: Different types of typosquatting with abbreviations
and examples.

It has been shown that people are more likely to make
typos that involve a one-character distance, also called
as Damerau-Levenshtein (DL) distance one [22]. Specif-
ically, DL-1 typos can be categorized into four com-
mon types: character-addition, character-omission, character-
permutation, and character-substitution. While the first two
types are self-explained, character-permutation refers to
swapping two adjacent characters, and character-substitution
means replacing one character in a string with another char-
acter.

Misinterpretation (MI) represents the potential incidents
when users misinterpret two characters that look like each
other. For example, users misinterpret the “l”(el) in “alice”
as “1”(one) and use “a1ice” in the download process. More
recent studies suggest that fat-finger [23] (two characters are
close to each other on the keyboard) may also yield higher
chances of typing mistakes. While other types of typosquat-
ting (e.g., the missing-dot typo [24]) are also common in many
scenarios, they are not necessarily suitable for container reg-
istry typosquatting. Many container registries, such as Docker
Hub and Quay.io, do not support special characters (such as
“.", “_", or “-") in either username or image name of FQIDs.
In this work, we only focus on typosquatting for English let-
ters and numeric numbers. Table 1 shows examples of the
different types of typosquatting considered in this paper.

3 Container Registry Typosquatting
3.1 Threat Overview

As mentioned above, to download an image from a registry,
users need to initiate a pull Docker CLI command followed
by the FQID of the target image. Some developers (e.g., devel-
opers who use Linux Server that only supports command-line
input) may download container images by manually typing
their FQIDs. These developers are vulnerable to container
typosquatting attacks.

Figure 1 presents an example of pull image
reg.com/alice/linux, representing the target image
(linux) from the desired hosting registry (reg.com) under
the username alice. The problem is that the Docker pull
command is often issued in a console environment, and thus it
is not protected by any spelling check functionality. In many
cases, it does not require any authentication or authorization
for users to pull an image. Thus, users might unintentionally

reg.com

regg.com

User Input Container Image

alice

a1ice

alice

linux

linux

linux

2

1

Normal

$ docker pull
regg.com/alice/linux

$ docker pull
reg.com/a1ice/linux

$ docker pull
reg.com/alice/linux

Figure 1: Overview of two cases of container registry ty-
posquatting.

download other images when typos are made in the FQID. In
the existing container registry infrastructure, all repositories
under the username alice are managed by the same user and
cannot be modified by others. As a result, even if a typo is
made in the image name, the user will obtain an unwanted
container image, but it will still be managed by the same
owner (e.g., alice). Unless attackers can gain access to
the account with username alice in registry reg.com, they
cannot upload malicious images. However, there are two
cases (¶· in Figure 1) in which users might pull an image
maintained by malicious developers when typos happen.

Case ¶ represents the case of when users mistype in
the username field of the FQID (a1ice instead of alice).
This pull request still reaches the desired hosting registry
(reg.com), but it enters a different username to pull the im-
age linux. If the image linux exists in a1ice, the CLI will
download the image automatically; otherwise, an error mes-
sage will be reported. Therefore, adversaries can intentionally
obtain the username a1ice to bait users to download mali-
cious images. Also, this type of typosquatting is possible in
both public and private registries.

Case · illustrates a cross-platform typosquatting scenario,
where a user makes a typing mistake in the hostname field.
The download request reaches an undesired container reg-
istry (regg.com), instead of reg.com. As a result, the user
unknowingly obtains a container image with the same name
(e.g., linux) under the same username alice, but from an
undesired registry.

Typosquatting case · can occur in existing container reg-
istries that share similar hostnames. Additionally, adversaries
can utilize previously effective domain typosquatting tech-
niques [25] to reserve a typosquatting domain hosting mali-
cious registries by themselves.

3.2 Threat Model
The goal of container registry typosquatting attacks is to

distribute malicious container images by exploiting the po-
tential typos made by container users. Adversaries attempt



Registry Hostname Repository Username Typosquatting
Pairs

DL-1 Username DL-2 Username
Identical Image Total Identical Image Total

Docker Hub docker.io (default) 416,087 246,080 22,386 16,660 (22.1%) 75,312 37,816 (15.6%) 242,998
Quay.io quay.io 21,409 6,475 85 47 (39.5%) 119 168 (8.3%) 2,042

Table 2: Overview of public container registries.

to generate multiple typosquatting FQIDs similar to those of
existing benign images, and bait users to pull images from a
malicious repository. The target can be images in both public
and private registries, with popular images being preferable.
Adversaries can be simply normal container registry users
without any privileges/inside information, and they can uti-
lize the public information provided by the registry to select
targets. For some private registries used by teams and organi-
zations, adversaries might be one of the members who know
the FQIDs of existing images. In all cases, adversaries only
upload images into their own repositories, without compro-
mising the registry or others’ accounts.

To launch a typosquatting attack, adversaries first need
to obtain the necessary information, such as the FQIDs of
targeted (existing) images. This can be achieved by directly
browsing or searching repositories inside the existing con-
tainer registries. For example, Docker Hub allows users to
search repositories with particular names and provides the
pull count information. Adversaries can also register the tar-
get FQID in the registries to check the availability. Then,
adversaries can generate and register related typosquatting
FQIDs and further push malicious images.

Registering a username typically requires a unique and
verifiable email address, which is free to do as most email
service providers offer free email accounts. Adversaries can
also utilize disposable emails [26] for registration. To launch
a large-scale typosquatting attack, attackers can use multiple
email addresses to register many typosquatting usernames.
For some private registries or hosting attackers’ own registries,
attackers might need to pay a fee for a storage service or do-
main registration. Thus, in some scenarios, there is a cost
related to launching a container registry typosquatting attack.
However, while the cost is trivial (as discussed later), the
damage could be severe. Once tricking victims downloading
malicious images, attackers can (1) generate financial profits
(such as mining cryptocurrency using a victim’s system [14]),
(2) disclose sensitive information of the victim [9]), (3) har-
vest computing resources of the hosting server that may lead
to denial of services [27]), or even (4) take control over the
hosting server [28]).

Adversaries may further inject malicious code (e.g., back-
door) into a container image and circumvent the target reg-
istries’ checking mechanisms. While the creation of such
images is outside the scope of this paper, previous research
has shown that existing registries contain many malicious or
vulnerable images [29,30]. To make the attack even stealthier,
attackers can repackage a target image with malicious code,
so that users may not notice the difference, as the malicious

image has the exact same functionalities.

3.3 Ethics
To have a better understanding of the exploitability of ty-

posquatting threats in container registries, we conduct our ex-
periments by intentionally uploading multiple typosquatting
images to the public. Since our experiments involve human
interactions, we take ethical considerations seriously. Our ex-
periment procedure and protocols are carefully designed with
the collaboration of our institution’s Internal Review Board
(IRB) to minimize potential risks to users and ourselves.

First, our experiment procedure should not be considered
as a live phishing attempt with the use of honeypot. Watson
et al. [31] described the behavior of phishing as a technique
to lure victims into revealing personal information. Han et
al. [32] discussed the ethical issues of conducting research
with phishing honeypots. Szurdi et al. [20] studied email
typosquatting by registering typosquatting domains as hon-
eypots to collect mis-delivered emails. They examined the
content of the received emails to check if any sensitive in-
formation is included in these emails. Moreover, they sent
“honey emails” to existing typosquatting domains to scrutinize
the responses. Our experiment protocol differs from such a
procedure: we do not have access to any information about
the users who download our images, nor do we attempt to
collect any data from within our typosquatting images. We
only gather information about the pull counts of our uploaded
images. Such download statistics are available on the Docker
Hub as public information and the Google Cloud Console in
the category of registry API usage. Therefore, ethical con-
siderations of protecting sensitive information collection and
storage are not needed in our experiments.

Second, all of our experiments are conducted in legitimate
manners. We do not compromise any accounts. We register all
of our accounts legally through Docker Hub and Google Con-
tainer Registry. The image we uploaded is the latest release of
a bare-bone Ubuntu image without any modifications or code
injections. We scan our image through Docker Scan [33] and
Anchore [34], confirming that our uploaded image contains
zero security threat or CVE. We never advertise our images
anywhere and all images have no description to avoid being
searched by users. At the end of our study, we have manu-
ally deleted all of our uploaded typosquatting images and
disclosed our findings to Docker Hub and Quay.io via emails.

We acknowledge that our experiments cause inconve-
niences on users’ side, mainly waste of time and confusion.
Users waste their time if they download and execute our up-
loaded images. It might also cause a psychological effect of
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confusion if users are not aware of their typos. To minimize
these concerns, we carefully design our experiments by includ-
ing a clear warning message in our uploaded images, which
informs users of their typos and further provides the correct
download commands. Thus, after seeing such a warning mes-
sage, users who execute our image can correct their typos as
quickly as possible and then download the legitimate images.
In addition, our experiments can educate users about the secu-
rity risks of container registry typosquatting, increasing their
awareness of such typosquatting attacks, which is similar to
phishing training tests that have often been conducted inside
an organization.

4 Typosquatting in Public Registry
Public registries, such as Docker Hub and Quay.io, offer

free storage services, and thus attract numerous software de-
velopers to publish and share their container images. The
downstream traffic is also significant: some images reach
more than 2 billion downloads. Meanwhile, a large number
of usernames exist since each developer needs to register an
online account with a unique username. These characteristics
make public registries ideal platforms for launching container
registry typosquatting attacks (case ¶ in Figure 1).

4.1 Measurement on Public Registries
To comprehensively understand the potential occurrence of

typosquatting in public registries, we conduct a measurement
study on both Docker Hub and Quay.io. Since neither reg-
istries provide complete information of existing usernames
and images, we build several crawlers to automatically query
a large number of keywords and then record those uncovered
usernames and image repositories.

Data Collection. We use three methods for crawling: (1)
the search function provided by the Docker Hub API, which
returns a maximum of 10,000 results from Docker Hub; (2)
the Docker search CLI command that shows 100 results per
query for Quay.io; and (3) a web crawler to grab search results
from their websites directly. We obtain the keyword database
from the latest dump of all entries in Wiktionary [35], which
contains a total of 6,760,665 words, numbers, and special
characters.

We exclude common/popular image names such as “test,”
“docker,” “hello-world,” and combine the results from all meth-
ods. As listed in Table 2, in total, we find 416,087 and 21,409
container image repositories, with 246,080 and 6,475 unique
usernames in Docker Hub and Quay.io, respectively. The red
solid line in Figure 2 illustrates the CDF for the number of pull
counts of all our mined images, with about 1.8% of images
downloaded more than 100k times.

Results and Analysis. Table 2 presents the analysis on DL
distances for both registries. We find 75,312 username pairs in
Docker Hub and 119 pairs in Quay.io that meet the condition
of DL-1. The green dotted line in Figure 2 represents the CDF
distribution for the number of pull counts of those images with
DL-1 (referred to as typosquatting images). The distribution
is similar to that of all mined images, showing that some of
those DL-1 images are popular. Specifically, within those
identified username pairs, 16,660 in Docker Hub and 47 in
Quay.io contain at least one image repository with an identical
name. We conduct vulnerability scanning using docker scan
and Anchore to further investigate these images. The scanning
result reveals that 4,861 (29.1%) images in Docker Hub and
11 images (23.4%) in Quay.io contain at least one medium
or high severity CVE. The existence of these DL-1 container
images could potentially pose high security risks to users who
obtain an unwanted image if typos are made.

Within the 75,312 DL-1 username pairs in Docker Hub,
there are 22,386 pairs that fall into the five different types of
typosquatting: duplication (AD), deletion (DE), permutation
(SL), misinterpretation (MI), and fat-finger (FF). Figure 3
shows the number of usernames corresponding to each type
of DL-1 typosquatting. We find that fat-finger has the most
affected cases. Furthermore, Figure 4 shows the frequency
of all English letters and numeric numbers involved in the
existing DL-1 username pairs. In general, the occurrence
of affected English letters is significantly larger than that of
affected numeric numbers. The top 8 most affected alphabets
{a,i,s,e,r,t,o,n} account for 34,841 or 46.3% of the total
number of DL-1 username pairs.

In addition, we expand our analysis to include the occur-
rence of DL-2 and present the results in Table 2. Compared
to DL-1, the total number of username pairs with DL-2 is
significantly larger, with 242,998 in Docker Hub and 2,042
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in Quay.io. For image repositories with DL-2 FQIDs, we
uncover 37,816 and 168 pairs in Docker Hub and Quay.io,
respectively. To conclude, these measurement results demon-
strate that typosquatting attacks could pose a serious threat in
current public container registries.

4.2 Exploitation
We further conduct a proof-of-concept exploitation exper-

iment to demonstrate the severity of a container registry ty-
posquatting attack in public registries. We target 10 existing
Docker Hub usernames and create multiple typosquatting
usernames with an exact same image name. Then we upload
Ubuntu images and track the pull counts on a daily basis
to check whether users download our images. The experi-
ment lasts 210 days. Overall, we observe a total of 40,009
pull counts for 4,787 uploaded images. For 10 target user-
names, only one username is detected by Docker Hub; all
the typosquatting usernames related to that single target are
removed on day 105.

Methodology. The first task is to select target usernames
for launching typosquatting attacks. To maximize the proba-
bility of our uploaded images being downloaded, we heuristi-
cally choose two criteria for selecting usernames: (1) at least
one container image reaches a pull count of 10 million or
more, and (2) at least 20% of the container images are up-
dated within a one-week period. In total, we identify 2,436
usernames that meet the requirements, and we randomly se-
lect 10 of them as our target usernames.

Next, we generate typosquatting counterparts for the 10 tar-
get usernames. We generate two typosquatting usernames in
each of the five types of typosquatting mentioned in Section 2
(i.e., AD, DE, SW, MI, and FF). Particularly, we randomly
choose characters and perform the corresponding modifica-
tions. Then, for each image under 10 target usernames, we
upload our bare-bone Ubuntu images with the exact same
repository (image) name. In total, we generate 100 typosquat-
ting usernames and upload 4,787 images on Docker Hub with
typosquatting FQIDs. We record cumulative pull counts on
daily basis using the Docker Hub registry API.

Results and Analysis. Our experiment lasts 210 days. In
total, we record 40,009 pull counts for our uploaded images.

While the highest downloading count reaches more than
1,000, most images are pulled less than 5 times. Such an
observation indicates that the number of intentional pulling
of our uploaded images (from particular organizations or re-
searchers who might constantly pull images from Docker
Hub) is small (if any). On day 105, we find that 10 of our
typosquatting usernames are deleted by Docker Hub, along
with all 1,290 images under those usernames. Those 1,290
images contribute 3,867 downloading counts. Looking into
the details of those 10 usernames, we confirm that all deleted
typosquatting usernames are targeting a single username. The
fact that these usernames are removed indicates that Docker
Hub might have realized the attack behavior and thus have
taken proper actions. However, all other typosquatting user-
names (with images pulled 36,142 times) targeting the other
nine usernames remain active. This result suggests that a
container registry typosquatting attack is difficult to detect.

Figure 5 shows the trend of the total pull count as well
as a detailed breakdown of its daily increases. Overall, the
cumulative pull count indicates a linear increase trend. This
observation is reasonable and expected, since the occurrence
of users mistyping a character in the username field of FQID
should be random. We also observe that the daily increase
has multiple spikes: there are hundreds of pulls on some days.
For example, on day 27, we record the daily increase with a
total of 641 downloads. A breakdown of these 641 download
shows that 33 images are downloaded three times, 45 images
are downloaded two times, and the rest are downloaded once.
Another example is on day 70, we record 834 total downloads,
in which 278 downloads are generated by a single image.
While the root cause of those phenomenons remains unknown,
one possible explanation is that users keep pulling the image
because the downloaded image does not function as expected
and they fail to catch the typos.

Figure 6 presents the CDF distribution of our uploaded
images with respect to the number of pull counts. Of all up-
loaded images, 37 images have more than 100 pull counts by
the end of our experiment. In total, these 37 images account
for 10,209 of the total number of pull counts (about 25.5%),
with the largest one being pulled 1,094 times. To investigate
the reason that these images are particularly attractive, we
further check the characteristics of their targeting repositories.



We find that 35 out of 37 targeting images are updated on a
daily basis. Also, four of them have pull counts of more than
100 million, two images are pulled more than 5 million times,
and the rest also have at least 100k pull counts. Meanwhile,
about 80% of our uploaded images have pull counts of less
than 10. However, these images still attract 21,614 pull counts
or 54% of the total number of pull counts. Even when tar-
geting less popular benign images, typosquatting container
repositories might still be downloaded due to random typ-
ing errors. Those results suggest that popular and frequently
updated images are more attractive targets for launching a
container registry typosquatting attack. Meanwhile, our target
images cover many aspects, with different username length
and different base platform (e.g., Ubuntu, Java, and SQL re-
lated). However, we observe that, except for image popularity
and update frequency, other characteristics have little impact
on the effectiveness of typosquatting attacks, implying that
typos occur randomly when downloading container images.

Furthermore, Figure 7 breakdowns the pull counts of five
typosquatting types (i.e., AD, DE, SW, MI, and FF). We find
that usernames with character-omission (DE) typosquatting
attract the largest percentage (29.7%) of user downloads, in-
dicating that users are more likely to miss characters when
typing the image FQIDs. Meanwhile, the download counts
for the other four types are relatively equivalent, with the oc-
currence rate between 16% to 18%, which are still alarming
numbers. Overall, while our experiments are small scale tar-
geting only 10 usernames, the result still suggests that the
container registry typosquatting attack is indeed effective in
tricking users into downloading unwanted images.

Background Noise. Our approach might record user down-
loads that are not caused by typing mistakes (e.g., random
image crawling). To understand the impact of the background
noise on our 210-day experiment, we attempt to find the
existence of images with only a few or no downloads but
listed for a long time. If the background noise is large, we
expect to observe only a very small number of such images
existed in Docker Hub, as most images will be affected by the
background noise. We examine the download counts of exist-
ing container images that are listed for more than 7 months,
since our images were placed in Docker Hub for exactly 7
months. In total, we have identified 61,757 images that are
listed longer than 7 months. Among them, a large number
of images (14,160, 23%) have less than 2 downloads. More
specifically, 8,904 images (14.5%) have been downloaded
only once (we believe one is a reasonable number as develop-
ers might download their images once for testing), and 5,256
images (8.5%) have no download at all. This result indicates
that our recorded pull counts in the 210-day experiment are
less likely caused by random crawling.

Furthermore, we conduct an additional experiment as a con-
trol group of our exploitation study. In this experiment, we
target the same set of 10 container images used in our 210-day
experiments. For each of the 10 target container images, we

generate 3 different usernames using DL distances of 3, 4,
and 5, respectively, leading to 30 images in total. Also, we up-
load another 10 images with randomly generated usernames.
We monitor the download counts of these 40 images for 100
days. The result shows that the images containing DL-3, 4,
and 5 usernames attract an average of 0.57 downloads per
image with a total download count of 17; the 10 images with
randomly generated usernames receive 5 downloads in total,
with an average of 0.5 downloads per image. For compari-
son, on day 100 of our exploitation experiment, we record
17,076 download counts for the 4,787 images that we upload
to Docker Hub, with an average of 3.57 downloads for each
DL-1 typosquatting image. Such a result confirms that the
background noise during our download collection is low. It
further demonstrates that users are more likely to make DL-1
typing errors, and thereby DL-1 typosquatting images attract
more user downloads.

Cost Analysis. Finally, we discuss the cost for launching
the container registry typosquatting attack in public registries.
The attacks generally require three steps: (1) acquire infor-
mation of targets; (2) generate typosquatting usernames by
registering accounts; and (3) store images in public registries.
The first step has no cost as all information is available on-
line. The account registration requires adversaries to have a
large number of email addresses, as both Docker Hub and
Quay.io use valid, unique, and verifiable email addresses as
account identities. Since many email service providers (like
Gmail or Hotmail) are free, attackers can easily obtain many
valid email addresses. Users can also utilize temporary email
addresses such as disposable email services [26] for account
registration. Thus, the cost for obtaining accounts in public
registries is still zero. Finally, all of the image repositories
hosted in public registries are free of charge. As a result,
we conclude that the financial cost for launching container
registry typosquatting attacks is zero.

5 Typosquatting in Private Registry
Many private registries allow users to open or share reposi-

tories, thus making a typosquatting attack possible. We inves-
tigate the potential typosquatting opportunities in five existing
private registries (listed in Table 3).

5.1 Attack Vectors
Typosquatting threats, as shown in cases ¶ and · of Fig-

ure 1, might also exist in private registries. Attackers can in-
tentionally upload images to private registries with typosquat-
ting FQIDs. While private registries have different project-ID
management policies, our investigation reveals three potential
attack strategies to achieve DL-1 typosquatting FQID.

User-defined Project-ID Typosquatting. Launching a ty-
posquatting attack in private registries with user-defined
project-IDs is fairly straightforward. Once attackers iden-
tify their targeting project-IDs, they can generate a swarm of
typosquatting counterparts in the same private registry and



Registry Hostname Project-ID Permitted Characters Region Search Public Price /10GB/year

Alibaba registry.[region].aliyuncs.com User Define Alphabet, Number,“_",“-" 3 3 3 0
Amazon [client_id].dkr.ecr.[region].amazonaws.com Random Number 3 7 7 $12
Azure [username].azurecr.io User Define Alphabet, Number, “_",“-",“.",“/" 7 7 7 $61
Google [region].gcr.io User Define Alphabet, Number, “-" 3 7 3 $3.12
IBM [region].icr.io User Define Alphabet, Number, “_",“-" 3 7 3 $6

Table 3: Overview of private container registry.

upload their malicious images. In this study, we systemati-
cally investigate the possibility of project-ID typosquatting in
four of the private container registries that allow users to cus-
tomize their project-IDs, including Alibaba, Microsoft Azure,
Google, and IBM.

We obtain 407 unique project-IDs from Alibaba Container
Registry, and 158 unique project-IDs in Azure Registry. In
Google Container Registry, we find a total of 407 occupied
project-IDs. For IBM Container Registry, we focus on the
us.icr.io server and find 584 project-IDs. We randomly se-
lect 50 project-IDs from each registry for further testing. For
each selected project-ID, we generate a full list of potential
DL-1 project-IDs satisfying the five types of typosquatting
shown in Table 1. This list covers all DL-1 project-IDs that
can potentially be used to launch a project-ID typosquatting at-
tack. In total, we generate 35,861, 32,629, 25,183, and 29,636
project-IDs in Alibaba, Azure, Google, and IBM, respectively.
For Azure, Google, and IBM, we use the same trial-and-error
approach in the data collection procedure to check the ex-
istence of our generated project-IDs. For Alibaba, since the
search functionality cannot reveal any project-IDs in private
repositories, we also employ the trial-and-error approach to
check the existence of our typosquatting project-IDs.

Figure 8 shows the percentage of the available typosquat-
ting project-IDs that we generate in each registry. In all four
private registries, we observe that more than 90% of the DL-1
project-IDs are available for registration. With a large percent-
age of availability, attackers can intentionally register many
typosquatting project-IDs to host malicious images, and there-
fore, any users who accidentally download these malicious
images could be at risk for system compromisation due to
typing mistakes.

Randomly Generated Project-ID Typosquatting.
Whereas registries including Alibaba, Azure, Google, and
IBM allow users to customize the names of project-IDs,
Amazon uses a randomly generated 12-digit client-ID as the
project-ID for each user. With this policy adopted, attackers
can repeatedly create a large amount of accounts and hope
that some of them satisfy the DL-1 typosquatting preference.
We attempt to investigate the practicality of launching
project-ID typosquatting attacks on Amazon.

In order to generate a large number of AWS accounts in
Amazon, we first register a piloting AWS account and estab-
lish an organization group inside our account. This allows us
to create more Amazon accounts using the AWS Command-
Line Interface so that the whole process can be automatically
streamlined using a script. We raise the limitation of the total

allowed users in our organization to 20,000 by contacting
AWS customer services. Using the increased user quota, we
spawn 20,000 AWS accounts within our organization.

We compare and calculate the DL distance across all possi-
ble client-ID pairs from the 20,001 obtained client-IDs. Fig-
ure 9 shows the number of client-IDs pairs we obtained with
a DL distance less than 6. Unfortunately, we do not obtain
any DL-1 client-IDs, and the closest distance we achieved is
DL-2, with only one client-ID pair. Given the low probability
of obtaining DL-1 pairs, we conclude that it is difficult for
attackers to launch attacks in private registries using randomly
generated project-IDs.

Region Typosquatting. Many private registries allow
users to choose a specific data center location to host their
container repositories. A unique region code is used to rep-
resent the location information inside the hostname. Users
are expected to correctly type the region codes (and the rest
of the FQID fields) to obtain the desired images. Thus, if a
registry utilizes a similar, preferably DL-1, region codes, it
might be vulnerable to region typosquatting attacks.

We conduct a case study on the IBM Container Registry,
which contains five regions that are widely spread across
the world, including two data centers in Asia Pacific, one
in Europe, one in the U.K., and another one in the U.S. In
particular, the U.K. data center is assigned with hostname
uk.icr.io, and the US data center uses a very similar one,
us.icr.io. Apparently, these two URLs contain DL-1 region
codes. Further analysis shows that, within the 584 project-
IDs we identify in IBM Container Registry, 132 usernames
exist in both regions, which account for 76.3% in uk.icr.io
and 22.6% in us.icr.io. This result indicates that users
who mistype the region code of those 132 usernames may
unintentionally pull unwanted images from another region of
the registry.

5.2 Proof-of-Concept Exploitation
We also attempt to evaluate the feasibility and effective-

ness of launching typosquatting attacks on private registries.
As mentioned in the threat model, since enterprises typically
isolate their container images from the public, the key infor-
mation about target images, such as the popularity, total down-
load count, and latest update time, is not publicly available.
As a result, the scale of our experiment in private registries is
limited. To launch effective attacks, attackers might be one of
the internal members who can obtain an insider’s knowledge
(e.g., FQIDs of existing images and relevant information).
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With the IRB approval, we conduct a 60-day experiment
targeting the official container images provided by Google.
We randomly select 10 images and generate 100 DL-1 user-
names with typosquatting categories, including AD, DE, SW,
MI, and FF. We use the same Ubuntu image mentioned in Sec-
tion 4 for the typosquatting image. We record 62 pull counts
for our uploaded images, with the highest download count of
14. We further conduct a control group experiment in which
we upload 50 typosquatting images with DL-3 usernames and
50 images with randomly generated FQIDs. At the end of
our 60-day experiment, we record 6 downloads for these 100
images.

Overall, the results of the two experiments demonstrate
that private registries are also vulnerable to typosquatting
attacks, and the images with DL-1 usernames attract more
user downloads.

5.3 Cost Analysis
The cost primarily depends on the financial policy adopted

by each registry. Alibaba provides an always-free service
for hosting container repositories. Thus, the financial cost of
launching a typosquatting attack on Alibaba is zero. Other reg-
istries listed in Table 3, including Azure, Google, and IBM,
charge a service fee based on the amount of storage used
to host container repositories, as well as the network traffic
induced by downloading container images. Since container
images are usually lightweight and range from tens to hun-
dreds of megabytes (our testing image is only 20MB), we take
an image with 100MB as an example. The price for hosting
one image for one year is $0.031, $0.61, and $0.06 for Google,
Azure, and IBM, respectively. Compared with the potential
financial gains, the cost is relatively low and affordable.

6 Typosquatting Across Platforms
Cross-platform typosquatting may happen when users pull

images from a different registry. This scenario is shown as
case · in Figure 1.

6.1 Hostname Typosquatting
The key for launching such a cross-platform typosquatting

attack is to identify or establish a container registry with a host-

name similar to that of an existing registry, preferably with
DL-1 distance. This can be achieved by either self-hosting
container registries with typosquatting domain names or uti-
lizing existing registries.

6.1.1 Domain Typosquatting
Attackers can self-host container registries by registering

typosquatting domain names, where attackers have complete
control on the configuration of the entire registries. With
self-hosted registries, adversaries can host as many malicious
images as they need, and they can enable public access to all
of the hosted repositories.

To understand the feasibility, we investigate the availability
of the typosquatting domains on the market. For each con-
tainer registry in Tables 2 and 3, we generate a complete list
of all hostnames with DL-1 distance under the five categories.
In total, we generate 2,692 DL-1 typosquatting domain names
for the six container registries. We then utilize the bulk do-
main search function provided by Namecheap.com [36] to
check the availability of all generated hostnames and their reg-
istration prices. Note that in this experiment, we exclude the
typosquatting domains for Docker Hub since the docker.io
hostname can be omitted in the Docker pull command. We
also exclude the scenario of when typosquatting occurs in
the top-level domains (TLDs) and only focus on the domain
name part of the registry hostnames.

Table 4 presents the number of generated typosquatting
domain names for each repository and the current availability
of these typosquatting domains on the market. Among all
generated typosquatting domain names, 2,258 (83.9%) of
them are available for purchase. This result indicates that
such an attack is feasible as attackers have a large range of
typosquatting domain names available to register.

Table 4 also includes the purchasing price distribution for
our generated typosquatting domain names. For most do-
mains, the registration fee is under $30, with 72.5% (1,637 out
of 2,258) of them less than $10. In general, the domain names
under “.com" TLD is cheaper than the domains with “.io"
in term of regular registration price (<$10 vs. <$30). Only
26 domains have a purchasing price over $30. Overall, the
financial cost for such attacks is reasonable, as attackers no
longer need to pay a monthly storage fee for hosting images.

6.1.2 Existing Registry
Attackers can also utilize two existing registries to

launch cross-platform typosquatting attacks. For example,
as listed in Table 3, Google Container Registry and IBM
Container Registry share similar hostnames: Google uses
[region].gcr.io as its registry hostname, and IBM em-
ploys [region].icr.io. In addition, both registries operate
hosting servers in the mainland U.S. with the region code “us".
Specifically, the hostname for Google server in the U.S. is
us.gcr.io, while the southern U.S. region of the IBM server
holds a hostname us.icr.io. Obviously, the us.gcr.io



and us.icr.io satisfy the requirement of cross-platform ty-
posquatting attacks with a DL-1 character-substitution.

We further investigate the potential for attackers to launch
typosquatting attacks across Google Container Registry and
IBM Container Registry. To establish DL-1 typosquatting
FQIDs, attackers need to register the same project-ID as their
targeting repositories. For example, if the cross-platform ty-
posquatting target has the FQID us.icr.io/alice/linux
at IBM, attackers need to register the project-ID alice in
Google and upload a malicious image named linux. In this
case, the malicious image holds a typosquatting FQID of
us.gcr.io/alice/linux, which becomes a DL-1 counter-
part for the targeting image us.icr.io/alice/linux.

We analyze the same occupied project-ID lists in Section 5,
which contains 407 project-IDs in Google and 584 in IBM.
From the list, we identify a total of 82 project-IDs existing
in both registries, which account for 20% in Google and 14%
in IBM. We also confirm that the rest of the project-IDs (325
in Google and 502 in IBM) uniquely exist in their own reg-
istry, and the same project-IDs can be registered in the other
system for typosquatting attack purposes. Since the number
of overlapping project-IDs is relatively small, it is very likely
for attackers to successfully establish malicious images with
DL-1 FQIDs and launch cross-platform typosquatting attacks.

6.2 Missing Hostname
A special case for container image FQIDs is that the host-

name can be omitted if the container image is hosted in
Docker Hub. This introduces yet another potential threat: if
users forget to include a hostname in the Docker pull com-
mand, they might obtain an unwanted image from Docker
Hub, instead of from their desired registries.

To shed light on the missing-hostname typosquatting attack,
we utilize the same username lists we gathered in Section 4
for both Docker Hub and Quay.io. By comparing both lists
together, we identify 960 usernames that exist in both Docker
Hub and Quay.io. Our analysis also shows that Quay.io con-
tains 5,515 unique usernames that are not available on Docker
Hub, and Docker Hub contains 245,120 unique usernames
that are not available on Quay.io. A further analysis shows
that 117 (12.2%) of these shared usernames have uploaded
container images with the exact same image names on both
registries, which account for a total of 282 repositories. This
may indicate that some container developers have already
been aware of the fact that users might potentially mistype
the hostname and have taken proactive actions by uploading
the same images on both registries.

To further illustrate the effectiveness of the missing-
hostname attack, we also perform a 30-day experiment with
the IRB approval of our institution. We randomly select 10
unique usernames on Quay.io with high activity ratings, and
then manually register these usernames on Docker Hub. We
also upload our container images with the same name as the
original image name in Quay.io. We use the same bare-bone

Domain Available (Total) Price
<$10 <$30 >$30

aliyuncs.com 582 (619) 578 0 3
amazonaws.com 552 (692) 550 0 2
azurecr.com 511 (546) 509 0 2
quay.io 292 (327) 0 291 1
gcr.io 162 (254) 0 154 8
icr.io 159 (254) 0 149 10
Total 2,258 (2,692) 1,637 594 26

Table 4: Domain typosquatting for container registries with
registration price distributions.

Ubuntu image as mentioned in Section 4. We record the cu-
mulative pull count for these images for 30 days.

During our 30-day experiments, we record a total of 93 pull
counts, with the highest pull counts for a single image being
24. The pull count result suggests that the missing-hostname
might be exploited by container registry typosquatting attacks.

7 Mitigation

In this paper, we propose CRYSTAL (Container RegistrY
SquaTting ALarm), a lightweight extension on the existing
infrastructure of container registry, to mitigate the threat from
both container registry and user sides. Working from the reg-
istry side, CRYSTAL can be seamlessly integrated into ex-
isting container registry platforms to detect typosquatting be-
haviors and prevent users from registering extremely similar
usernames. Working from the user side, CRYSTAL extends
the image pull method to provide typing suggestions and
corrections to container users before the download process.
Overall, CRYSTAL can effectively mitigate the container
registry typosquatting problem with minimal overhead and
without changing the current container architecture.

7.1 Design

The primary goal of CRYSTAL is to identify possible al-
ternative FQIDs that could potentially lead to typosquatting
behaviors on both registry and user sides. Figure 10 illustrates
the overall architecture of the CRYSTAL tool. In general,
CRYSTAL contains three major modules: FQID Analyzer,
Alternative Finder, and Result Presenter. The FQID Analyzer
module is used on the user side to analyze the key informa-
tion, including hostnames, usernames, and image names from
the user inputs. The extracted information is then input into
Alternative Finder for the detection of images with poten-
tial typosquatting FQIDs, and then Result Presenter presents
potential alternatives. When CRYSTAL is deployed on reg-
istries, Alternative Finder is fed with the account registration
information, and the identified usernames from Result Presen-
ter further help the registry to decide whether the registration
request should be permitted or denied.



Figure 10: Design overview of CRYSTAL.

7.1.1 FQID Analyzer

FQID Analyzer first extracts key information from a
Docker pull command, including the hostname, username,
and image name for the target image. Since different con-
tainer registries adopt different FQID formats (especially for
the hostname), FQID Analyzer also identifies the FQID in-
formation based on the format of each registry. For example,
registries like Google and IBM include the region code in-
side the hostnames, while other registries like Azure do not.
Also, the hostname docker.io can be omitted if the corre-
sponding image repository is hosted in Docker Hub. Thus,
FQID Analyzer maintains a list of FQID templates for each
supported container registry. Every time the user executes a
Docker pull command, the FQID Analyzer module performs
a table lookup to match the provided FQID with one of the
recorded templates. Also, the analyzer adds the docker.io
hostname back to the FQID if the hostname is missing.

7.1.2 Alternative Finder

Once all three fields of the target FQID are obtained (either
from FQID Analyzer on the user side or the username regis-
tration request on the registry side), Alternative Finder further
searches for other container images with similar FQIDs. Since
users are more likely to make DL-1 typing mistakes, Alter-
native Finder is currently configured to focus on alternative
usernames with a one-character difference.

Download History and Favorite List. On the user side,
Alternative Finder maintains a record of the user’s download
history and a list of favorite container images. The download
history contains the FQIDs of all previously obtained con-
tainer images. Every time the user executes a Docker pull
command, Alternative Finder compares the FQID provided
by the user to the history record and identifies any container

images with DL-1 FQIDs. The favorite list is further designed
so that users can manually configure their favorite images by
themselves. It also enables CRYSTAL to maintain multiple
cache files to accelerate the search process.

Hostnames. The hostname of an FQID usually consists of
two types of information: region code and domain name. Al-
ternative Finder searches both fields independently to identify
potential typosquatting targets. For example, it first identi-
fies any potential usernames residing in a different region
code, such as us.icr.io versus uk.icr.io. Then, Alterna-
tive Finder locks the region code and seeks other container
registries with a DL-1 domain name to reveal alternative do-
main names with the same region code.

Usernames. To identify alternatives for the provided user-
name, Alternative Finder performs a lightweight image search
within the desired container registry. If CRYSTAL is deployed
on the desired container registry, the image search can be per-
formed directly on the repository database within the registry.
Otherwise, for registries whose search functionality is pub-
licly accessible, Alternative Finder utilizes the image name
as a query term and executes a search command to find other
existing images with DL-1 usernames. If the search function-
ality is prohibited or disabled, Alternative Finder relies on
cache files, which can be periodically updated offline. For
instance, CRYSTAL can utilize the trial-and-error method
mentioned in Section 5 to update the favorite list.

Cache files. To enable fast lookups and reduce network traf-
fic, CRYSTAL maintains four cache files, including lists of
download history, favorite images, supported hostnames, and
popular images. Alternative Finder first searches typosquat-
ting images in both download history and favorite images with
DL-1 FQIDs. To search for alternative DL-1 hostnames, we
maintain another cache file containing all the domain names
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Figure 11: Accuracy for different search
results and sizes of popular image files.
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sult statuses in four case scenarios.

and their associated region codes of the container registries
(as shown in Tables 2 and 3). The Alternative Finder module
performs a table lookup to distinguish any similar domain
names or region codes. The last cache file consists of a list
of popular images with a large number of pull counts from
the container registries that we support. The maximum FQID
entries included in each cache file is configurable and limited
by default to prevent over-growth. Users can also control the
number of results returned from Alternative Finder’s search
command to balance the overall performance and accuracy.

7.1.3 Result Presenter

After the lookup procedure, the Result Presenter module
presents the search result to the user by providing both the
user-provided image and potential alternatives. First, Result
Presenter lists the hostname, username, and image name from
the image FQID that users provide in the Docker pull com-
mand. Particularly, docker.io is added by FQID Analyzer
to enable users to self-correct any typing mistakes if the result
of FQID Analyzer does not match their intentions.

Next, Result Presenter shows the alternative images iden-
tified by Alternative Finder. In general, it favors container
images recognized from the download history and the favorite
list. All DL-1 alternative images identified from these cache
files are always presented at the top of the result list. Addi-
tional queries are also performed to filter other images based
on their popularity. We currently utilize the total download
counts and star counts as the popularity. The results are listed
in descending order of image popularity (i.e., images with
larger download counts or star counts are displayed first). If
multiple results exist with the same popularity, Result Presen-
ter shows the results by the order of different hostname, region
code, username, and image name. Meanwhile, any other met-
rics can be easily integrated into CRYSTAL to enhance its
effectiveness. If no alternative images are identified, Result
Presenter automatically allows users to download the image
without presenting any warnings.

The format is slightly different when CRYSTAL is de-
ployed on the registry side. Result Presenter shows similar
usernames obtained from FQID Analyzer, allowing the reg-
istry to adopt further policies, such as permitting/denying the
corresponding username registration.

7.2 Evaluation
We implement a preliminary prototype of CRYSTAL tool

on the user side by expanding the functionality of the Docker
Command-Line Interface. We modulize our implementation
so that CRYSTAL can also be easily integrated into the reg-
istry server side. In our experiments, we focus on typosquat-
ting images hosted in Docker Hub for demonstration purposes,
while our tool can be easily applied across different registries.
Also we limit our computing resources to simulate an average
computing environment for most general container users. Our
testing system is a virtual machine running a Ubuntu 18.04
system containing 4 CPU cores and 8G of memory. We eval-
uate the performance of CRYSTAL on the following three
aspects: accuracy, overhead, and usability.

To investigate the performance of CRYSTAL, we randomly
select 10,000 container repositories in Docker Hub, and we
generate one typosquatting FQIDs for all of these reposito-
ries. We execute the CRYSTAL tool to process all generated
typosquatting FQIDs and record the average execution time.
We adjust different number of entries in the popular image
cache file, and set different limitation numbers for search re-
sults. The cache file selects and stores popular images based
on their pull counts. We also calculate the overall accuracy
under different configurations.

Accuracy. Figure 11 presents the result of the accuracy for
finding correct image repositories. If the cache file contains
400,000 entries, CRYSTAL can maintain a high accuracy of
more than 97.5% in all cases. The size of the cache file is
about 10 megabytes, which is acceptable. In other cases, the
accuracy gradually increases with a higher number of entries
in the popular image file and more limitations on search re-
sults. But even with the minimum search result limitation
(e.g., 25 in our experiment) and zero entries in the popular
image file, our tool can still correctly detect 60% of typing
errors in the download command. With the cache file con-
taining 200k entries, the accuracy is about 74.5% for the 25
searching result limitation. To obtain an accuracy of 71%, it
takes an average of 100 search results with 100k entries, and
200 search results with 50k entries in the cache file.

Overhead. We first measure the download time for users
to pull a container image from Docker Hub. We randomly pull
1,000 container images on Docker Hub and record an average
download time about 51.2 seconds with 100 Mbps network



bandwidth. Figure 12 shows the average execution time of
CRYSTAL. If the popular image cache file contains 400k
entries which accounts for 96% of the entire list of recognized
repositories, the average execution time is relatively stable
at 2 seconds, which only accounts for less than 4% of the
overall image download time. This is reasonable as almost all
names are already cached. In other cases, the execution time
dramatically increases with a high limitation of search results.
Particularly, when the limitation of searching results reaches
1,000, the execution time is larger than the case caching 400k
entries, which has a much higher accuracy.

Otherwise, to reach at least 70% accuracy, the execution
times for 200k entries with 25 search result limit, 100k en-
tries with 100 search result limit, 50k entries with 200 search
result limit are 0.989s, 0.793s, and 0.857s, respectively. Com-
bined with the accuracy results, users can configure CRYS-
TAL based on their preferences.

Usability. CRYSTAL does not change the existing work-
flow of the Docker CLI, except that users might be required
to confirm the correctness of their typed FQIDs and make
any adjustments if necessary. We further measure the number
of lines needed in the Result Presenter to present the target
image for users. If it requires a large number of lines, it will
degrade the usability. We configure CRYSTAL to present
at most 100 lines. We consider the configurations that have
an execution time of less than 2 seconds and an accuracy of
more than 70%. We illustrate the required number of lines in
Figure 13. The results show that, with the exception of failed
cases, almost all of the remaining cases need only one line to
present the target FQID correctly to users. Thus, we believe
CRYSTAL has little impact on usability.

7.3 Limitation and Future Work
Users who receive many warnings when downloading con-

tainer images could experience warning fatigue. To mitigate
this issue, we implement a preliminary approach: CRYSTAL
allows the download process without showing any warning
messages for an image having comparably high popularity.
We will fully address the fatigue issue in our future work.

Our CRYSTAL prototype is implemented on the user side
as an extension of the Docker CLI and focuses on Docker.
Docker also supports using a FROM statement in Dockerfile
to automatically pull an image when building a new container
image. We also observe an increasing popularity of some
Docker alternatives, such as Singularity [37] and Podman [38].
The overall performance would be similar or even better if
CRYSTAL was deployed on the registry side. If CRYSTAL is
running on a container registry consisting of datacenter-grade
servers, the total execution time should be further reduced.
In addition, the image search function can be integrated with
the registry’s database, further reducing network traffic and
latency. Accuracy and user experience can also be enhanced
if the registry searches the entire repository database for user-
name registration requests and caches more elements from

other registries. In the future work, we will extend CRYSTAL
to the registry side and support more methods for mitigating
potential container registry typosquatting threats.

8 Related Work
8.1 Container Performance and Security

Extensive research efforts have been conducted on both
performance [10, 39–41] and security [42–45] of containers.
Gupta [46] presented a brief overview of container security.
Grattafiori [47] further explored potential vulnerabilities in
containers, including container escaping, cross-container at-
tacks, and inner-container attacks. Lin et al. [28] demonstrated
that exploiting container vulnerabilities can cause problems
such as sensitive information leakage, remote control, denial
of service attacks, and privilege escalation. While covert chan-
nels are possible in containers [48], Gao et al. [9, 49] further
revealed the existence of information leakage channels from
which containers can obtain information about their hosting
servers. Gao et al. [27] also suggested that malicious con-
tainers can exhaust the computing resources of their host by
escaping the resource control of Linux control groups.

Containers are also widely adopted in serverless comput-
ing [50, 51]. While most existing works attempt to enhance
performance [52, 53] such as reducing startup time [54–56],
few works focus on the security aspect of serverless comput-
ing, including potential vulnerabilities [57] and defenses [58].
Our work differs from all previous works in that our study
focuses on revealing new vulnerabilities that attackers exploit
to distribute malicious container images. Moreover, the un-
covered container registry typosquatting attack complements
previous studies on feasible and practical container attacks.

8.2 Container Registry Security
While many studies focus on improving the performance

of container registries [59, 60], security issues in container
registries have also received much attention. Gummaraju et
al. [29] showed that around 40% of the container images
uploaded by general users in Docker Hub are vulnerable to
various cyber-attacks. Shu et al. [30] proposed a Docker Im-
age Vulnerability Analysis (DIVA) tool and scanned a large
amount of images in Docker Hub. Their study reveals that an
average of 180 vulnerabilities exist in both official and com-
munity repositories. Furthermore, Zerouali et al. [61] demon-
strated that outdated container images pose serious security
threats due to those vulnerable, buggy packages. To the best
of our knowledge, we are the first to study the typosquatting
problem and its security threats to container registries.

8.3 Typosquatting
Our work shares the fundamental concepts of domain ty-

posquatting. Early research can be traced back to 1999 when
the Anticybersquatting Consumer Protection Act (ACPA) [62]
was published. Since then, much research effort has been



devoted to studying domain name typosquatting, including
the semantic features that can cause more typing errors [63]
and the potential consequences caused by a typosquatting
attack [64]. Szurdi et al. [19] demonstrated that the vast ma-
jority of typosquatting attackers are targeting lower ranking
domains. Agten et al. [65] suggested that the majority of do-
main names are not properly protected against typosquatting
attacks. In addition to the traditional domain names, Liu et
al. [18] uncovered that typosquatting attacks also exist in
International Domain Names (IDN). Le Pochat et al. [66]
explored the possibility of typosquatting on non-English key-
board layouts. Tian et al. [67] revealed the wide existence of
typosquatting domains and uncovered their high effectiveness
on avoiding detection. Based on traditional domain typosquat-
ting, many studies also revealed other squatting techniques
targeting domain names, including combosquatting [68], bit-
squatting [69, 70], and abbreviation squatting [71].

Moreover, typosquatting has been applied to scenarios be-
yond domain names, such as email [20] and mobile apps [21].
Studies also revealed potential squatting vulnerabilities in
voice recognition systems [72–74]. Inspired by previous
works, we reveal the container registry typosquatting threat.

9 Conclusion
In this paper, we conducted a systematic study on the con-

tainer registry typosquatting threat. We demonstrated that
adversaries can impersonate FQIDs of benign repositories
to spread malicious container images. This attack can be
launched within both public and private registries as well as
across different platforms, posing realistic security threats to
the container ecosystem. Our exploitation experiments for
public and private registries show that users indeed make
typing errors and download unwanted container images. We
also validated that a large amount of typosquatting usernames,
project-IDs, and domain names are currently available for pub-
lic registration. To mitigate the threat, we proposed CRYSTAL
that assists container registries to discover potential typosquat-
ting FQIDs and alerts users about potential typing errors when
downloading container images. We implemented a prototype
of CRYSTAL on Docker CLI and achieved a high detection
accuracy of more than 97.5% with low overhead.
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