AIT 682: Network and Systems Security

Instructor: Dr. Kun Sun
About Instructor

• Dr. Kun Sun, Associate Professor of Information Sciences and Technology
 – Phone: (703) 993-1715
 – Email: ksun3@gmu.edu
 – Office: Research I, Suite 417
 – Office hours
 • 11:00pm-noon WF, or by appointment (send me email)
About TA

• Omoche (Cheche) Oagada
 – Email: oagada@masonlive.gmu.edu
 – Office: TBD
 – Office Hour: TBD
Course Objectives

• Understanding of basic issues, concepts, principles, and mechanisms in computer and network security.
 – Basic security concepts
 – Cryptography
 – Authentication
 – Kerberos
 – IPsec and Internet key management
 – SSL/TLS
 – Firewall
 – Some advanced topics

• Be able to determine appropriate mechanisms for protecting networked systems.
Course Outline

• Basic Security Concepts
 – Confidentiality, integrity, availability
 – Security policies, security mechanisms, security assurance

• Cryptography
 – Basic number theory
 – Secret key cryptosystems
 – Public key cryptosystems
 – Hash function
 – Key management
Course Outline (Cont’d)

• Identification and Authentication
 – Basic concepts of identification and authentication
 – User authentication
 – Authentication protocols
Course Outline (Cont’d)

• Network and Distributed Systems Security
 – Public Key Infrastructure (PKI)
 – Kerberos
 – IPsec
 – IPsec key management
 – SSL/TLS
 – Firewalls
Course Outline (Cont’d)

• Miscellaneous topics
 – Evaluation of secure information systems
 – Mobile security
 – Cloud security
 – Malicious software
 – Security management
Term Project

• Project
 – Research paper
 – Survey paper

• See the class website for detailed requirement
 – http://csis.gmu.edu/ksun/AIT682-f17/proposal-req.html
 – http://csis.gmu.edu/ksun/AIT682-f17/project-req.html

• You are expected to explore issues beyond what’s included in lectures by yourselves
What’s Left Out?

• Hacking
• System configuration, O.S. internals
• Political, legal, regulatory
• Financial, economics
• Social, psychological, human factors
• Morals, ethics
• Operational, business procedures, logistics
Prerequisites

• Programming experience in Java and C is required

• Knowledge in data communication and networking
Textbook

• Required textbook
On-line Resources

• WWW page: http://csis.gmu.edu/ksun/AIT682-f17/index.html

• For course materials, e.g., lecture slides, homework files, project, tools, etc.
 – Will be updated frequently. So check frequently.
Grading

- Homework assignments 20%
- Term project: 30%
- Midterm exam: 20%
- Final exam: 30%

Note:

- you must use text editor (e.g. MS Word, latex) to complete your homework and project. Handwritten submissions are not accepted.
- All homework and projects are submitted via Blackboard.
Policies on late assignments

• Homework and project deadlines will be hard.
• Late homework will be accepted with a 10% reduction in grade for each day they are late by.
• Once a homework assignment is discussed in class, submissions will no longer be accepted.
Policies on Absences and Makeup

• You may be excused from an exam only with a university approved condition, with proof. For example, if you cannot take an exam because of a sickness, we will need a doctor's note.

• Events such as going on a business trip or attending a brother's wedding are not an acceptable excuse for not taking an exam at its scheduled time and place.

• You will have one chance to take a makeup exam if your absence is excused. There will be no makeup for homework assignments.
• The university, college, and department policies against academic dishonesty will be strictly enforced.

• Honor code
 – Students are required to follow George Mason University’s Honor System, as described in the student handbook.
Check the website for details!
AIT 682: Network and Systems Security

Topic #1. Basic Security Concepts
Why This Course?

• Increased volume of security incidents
• Security threats
 – Malware: Virus, worm, spyware
 – Spam
 – Botnet
 – DDoS attacks
 – Phishing
 – Cross-site scripting (XSS)
 – ...
Contributing Factors

• Lack of awareness of threats and risks of information systems
 – Security measures are often not considered until an Enterprise has been penetrated by malicious users
 – The situation is getting better, but ...

• (Historical) Reluctance to invest in security mechanisms
 – The situation is improving
 • Example: Windows 95 → Windows 2000 → Windows XP → Windows Vista → Windows 7 → Windows 8
 – But there exists legacy software

• Wide-open network policies
 – Many Internet sites allow wide-open Internet access
Contributing Factors (Cont’d)

- Lack of security in TCP/IP protocol suite
 - Most TCP/IP protocols not built with security in mind
 - Work is actively progressing within the Internet Engineering Task Force (IETF)

- Complexity of security management and administration
 - Security is not just encryption and authentication

- Software vulnerabilities
 - Example: buffer overflow vulnerabilities
 - We need techniques and tools to better software security

- Hacker skills keep improving
 - Cyber warfare
Security Objectives

Confidentiality (Secrecy)

Integrity

Availability (Denial of Service)
Security Objectives (CIA)

- **Confidentiality** — Prevent/detect/deter improper disclosure of information
- **Integrity** — Prevent/detect/deter improper modification of information
- **Availability** — Prevent/detect/deter improper denial of access to services provided by the system

- These objectives have different specific interpretations in different contexts
Commercial Example

- **Confidentiality** — An employee should not come to know the salary of his manager.
- **Integrity** — An employee should not be able to modify the employee's own salary.
- **Availability** — Paychecks should be printed on time as stipulated by law.
Military Example

• Confidentiality — The target coordinates of a missile should not be improperly disclosed
• Integrity — The target coordinates of a missile should not be improperly modified
• Availability — When the proper command is issued the missile should fire
A Fourth Objective

• Securing computing resources — Prevent/detect/deter improper use of computing resources including
 – Hardware Resources
 – Software resources
 – Data resources
 – Network resources
Achieving Security

• Security policy — What?
• Security mechanism — How?
• Security assurance — How well?
Security Policy

Organizational Policy

Automated Information System Policy
Compusec + Comsec = Infosec
Security Mechanisms

• In general three types
 – Prevention
 • Example: Access control
 – Detection
 • Example: Auditing and intrusion detection
 – Tolerance
 • Example: Byzantine agreement

Good prevention and detection both require good authentication as a foundation
Security Mechanisms (Cont’d)

• Prevention is more fundamental
 – Detection seeks to prevent by threat of punitive action
 – Detection requires that the audit trail be protected from alteration
• Sometime detection is the only option, e.g.,
 – Accountability in proper use of authorized privileges
 – Modification of messages in a network
• Security functions are typically made available to users as a set of *security services*
• Cryptography underlies (almost) all security mechanisms
Security Services

• Security functions are typically made available to users as a set of security services through APIs or integrated interfaces

• **Confidentiality**: protection of any information from being exposed to unintended entities.
 - Information content.
 - Parties involved.
 - Where they are, how they communicate, how often, etc.

• **Authentication**: assurance that an entity of concern or the origin of a communication is authentic - it’s what it claims to be or from

• **Integrity**: assurance that the information has not been tampered with
• **Non-repudiation**: offer of evidence that a party is indeed the sender or a receiver of certain information

• **Access control**: facilities to determine and enforce who is allowed access to what resources, hosts, software, network connections

• **Monitor & response**: facilities for monitoring security attacks, generating indications, surviving (tolerating) and recovering from attacks
Security Assurance

• **How well** your security mechanisms guarantee your security policy
• Everyone wants high assurance
• High assurance implies high cost
 – May not be possible
• Trade-off is needed
Security by Obscurity

• Security by obscurity
 – If we hide the inner workings of a system it will be secure

• Less and less applicable in the emerging world of vendor-independent open standards

• Less and less applicable in a world of widespread computer knowledge and expertise
Security by Legislation

• Security by legislation says that if we instruct our users on how to behave we can secure our systems

• For example
 – Users should not share passwords
 – Users should not write down passwords
 – Users should not type in their password when someone is looking over their shoulder

• User awareness and cooperation is important, but cannot be the principal focus for achieving security
Security Tradeoffs

Security

Ease of Use

Functionality

COST

Ease of Use
Threat-Vulnerability-Risk

- Threats — *Possible* attacks on the system
- Vulnerabilities — Weaknesses that may be exploited to cause loss or harm
- Risk — A measure of the possibility of security breaches and severity of the ensuing damage

- Requires assessment of threats and vulnerabilities
Threat Model and Attack Model

• Threat model and attack model need to be clarified before any security mechanism is developed

• Threat model
 – Assumptions about potential attackers
 – Describes the attacker’s capabilities

• Attack model
 – Assumptions about the attacks
 – Describe how attacks are launched
Risk Management

• Risk analysis
 – NIST Common Vulnerability Scoring System (CVSS)
 – Mathematical formulae and computer models can be developed, but the parameters are difficult to estimate.

• Risk reduction
 – Attack surface, Attack graph

• Risk acceptance
 – Certification
 • Technical evaluation of a system's security features with respect to how well they meet a set of specified security requirements
 – Accreditation
 • The management action of approving an automated system, perhaps with prescribed administrative safeguards, for use in a particular environment