US 20150264059A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0264059 A1

STAVROU et al. 43) Pub. Date: Sep. 17, 2015
(54) MALWARE DETECTOR Publication Classification
(71) Applicant: George Mason Research Foundation, (51) Int.ClL
Inc., Fairfax, VA (US) HO4L 29/06 (2006.01)
(52) US.CL
(72) Inventors: Angelos STAVROU, Springfield, VA CPC ... HO4L 63/145 (2013.01); HO4L 63/1416
(US); Sushil JAJODIA, Oakton, VA (2013.01)
(US); Anup K. GHOSH, Centreville,
VA (US); Rhandi MARTIN, St. James (57) ABSTRACT
(BB); Charalampos Andrianakis, Crete A transparent proxy for malware detection includes a monitor
(GR) module, a protocol determination module, a challenge gen-
eration module, a response determination module, and a data
(73) Assignee: George Mason Research Foundation, control module. The monitor module examines data originat-
Inc., Fairfax, VA (US) ing from an application towards a remote server. The protocol
determination module identifies the protocol type used for the
data. The challenge generation module produces a challenge
(21) - Appl. No.: 14/482,793 for the applicatio%l l;%ased upon the protpocol type, sends tﬁe
. challenge to the application, and maintains a state related to
(22) Filed: Sep. 10, 2014 the data and the challenge. The response determination mod-
ule makes a determination if an automatic non-interactive
Related U.S. Application Data application response is received in response to the challenge
(63) Continuation of application No. 12/757,675, filed on from the application. The data control module allows the ﬁrst
Apt. 9, 2010, now Pat. No. 8 93'5 773 T data to continue to the remote server when the determination
T ’ TR T is valid. The data control module reports malware detection
(60) Provisional application No. 61/168,053, filed on Apr. and blocks the data to continue to the remote server when the

9, 2009.

determination is invalid.

Enterprise
Network

138

Transparent
;}{QXE}, ke

internet)
Server 2

Laplop

W

Ssrvern

Patent Application Publication Sep. 17, 2015 Sheet 1 of 10 US 2015/0264059 A1

t#

| Transparent} |
Enterprise @~ Proxy ¥ Intemel)
Network | 130 W Sewerd

aaaaa

Laptop Laptop

Patent Application Publication Sep. 17, 2015 Sheet 2 of 10 US 2015/0264059 A1

LaplopWorkstation

AN Transparent g

interned

Patent Application Publication Sep. 17, 2015 Sheet 3 of 10 US 2015/0264059 A1
Transparent Proxy
33 .
v ?Ff}i#t{?i pessronsens Rg;}{;lft
M protocal Type f\\ Challenge | & Report { | A
Determination 37 Generation | | Module @ 348 }
SRR) 2 PERFDER W,
Modute yz 305 Modle | @ M0 3
Enw&:ﬁi&s&w
§3.i @ias 3:3‘
§ : 2
gsponse g
§$s§§§‘ss§ {hallengs E i
0 etermination IO 2
/| Module } Classification
208 y o Modle
B ' 350 ;
Pt R A RA RS RA RS R RN U
ke m§> 302 Data Control Module .i ; >
3067 Bﬁj
gggﬁgggﬁm\;ig} Remote §§§¥§T{$}
Traffic Traffic

Patent Application Publication

Sep. 17,2015 Sheet40f10 US 2015/0264059 Al
Transpargnt
Application Proxy Server
a0l i 4
&
_ ¢
403
Data |
?@
404
l¢ Active Content Challangs 4
405
Challenge Responss 406
Data {Scenario {
| Joalbeerof)
¥ Data Blocked {Scenario 2)
48 ul
Server Responss
4 4
¢ & ¢
FIG.4
& P

Patent Application Publication

Sep. 17,2015 Sheet 5 of 10

US 2015/0264059 A1

by <

<

p S0 Examine duta originating from at least one application &

Hodd dafs fransm

e

wsion B the serser,

03

ROOR0RTK

Hdentify the protocel fype

3

.

‘atonacoas:

pratucol fype

Produce a challenge for the npplication based upon the

i

508

8300000

Send the challenge ta the application

!

MRRREK

506 Stave 2 stafe related to the daty sud the ohall

SBT 1o server

Black data transmission |

5%

S08Challenge response

enge
VS | Agw data transmssion

508 g0 server

Patent Application Publication

Application

P Active Content Challenge I

Sep. 17,2015 Sheet60f10 US 2015/0264059 Al
Transparent Server
& §
603
Data N
604

805
Challenge Response N

606
Server Responss

{Scenario 1)

Jerver Response

&
&

{Scenatio 2}
i

Yposssoilpuiniiicilii

Patent Application Publication

Sep. 17,2015 Sheet 7 of 10

US 2015/0264059 A1

N

{81 E vamine data orfsinating from at least one applications

i

)
s
Lo

Identtly the protocal type

104

Froduce 3 challenge for the application based upon the

protocol type

i

Send the challenge to the applieation

Block Server's Response]
il

No

106 8tore a state velated to the dats and the challenge

,_§_€ hallenge response
o feelved? 7

Yes 1

Allow Server’s Response

]

Patent Application Publication

Time

Sep. 17,2015 Sheet 8 of 10

US 2015/0264059 A1

Web Browsers
Transparent
§§§m§y
3 304 B
GETipage hinl
& -
85
P Active Content Challenge $
§08
ETipage hmiPhashe
s GETipage.htmi?hash ?2%
it
Server Response

US 2015/0264059 A1

Sep. 17,2015 Sheet 9 of 10

Patent Application Publication

FIG. 94

Hresd,

Etnd

Patent Application Publication Sep. 17,2015 Sheet 10 of 10 US 2015/0264059 A1

<himdis>

<head»

<meta http-eguivs refresh”™ contents"{rurishbip://
raguasted-url. con/ Thash=01 2 ME8789%»

< head>

<deady>

<fbody>

<Shtmli>

FIG, 10A

~hitml>

hisads

ssoripd lasnguagsstJavaSoriptt>
,(:gw..m

window, losation="htip: //reguested-url . con/
Thash=(133456789" ;

PR

</soript>»

<fhead>

<ody>

< S oady>

< bmdos

FiG. 10B

For ActionlSgript 1:
getURL 'hite: /freguested-url, com/ Phash=0133458788") ;

For ZcobionBoript &
navigateToURL {new URLReguest{"hitp://regquested-
prl.com/ Thash=0123456789%1) ;

FIG, 10C

US 2015/0264059 Al

MALWARE DETECTOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 61/168,053, filed Apr. 9, 2009, entitled
“Malware Detector,” which is hereby incorporated by refer-
ence in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support
under Contract No. W911NF-08-C-0139 awarded by US
Army AMC. The government has certain rights in the inven-
tion.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0003] FIG .1 shows an architecture of a network using of
a transparent proxy in an Enterprise network as per an aspect
of' an embodiment of the present invention.

[0004] FIG. 2 shows a transparent proxy in a laptop or
workstation as per an aspect of an embodiment of the present
invention.

[0005] FIG. 3 is a block diagram of a transparent proxy
according to an aspect of an embodiment of the present inven-
tion.

[0006] FIG. 4 shows a diagram of a malware detection
message flow in a transparent proxy according to an aspect of
an embodiment of the present invention.

[0007] FIG. 5 shows a diagram of a malware detection
process in a transparent proxy as per an aspect of an embodi-
ment of the present invention.

[0008] FIG. 6 shows a diagram of a malware detection
message flow in a transparent proxy according to an aspect of
an embodiment of the present invention.

[0009] FIG. 7 shows a diagram of a malware detection
process in a transparent proxy according to an aspect of an
embodiment of the present invention.

[0010] FIG. 8 is a diagram showing a malware detection
message flow in a transparent proxy communicating with a
Web browser application according to an aspect of an
embodiment of the present invention.

[0011] FIG. 9A is a table showing a summary of features
that are used to detect popular VOIP clients based on the order
used in the network protocol headers according to an aspect of
an embodiment of the present invention.

[0012] FIG. 9B is a table showing the classification of dif-
ferent VOIP protocol clients based on the FROM and TO
fields observed on the network communications according to
an aspect of an embodiment of the present invention.

[0013] FIG. 10A is an example of an HTML active chal-
lenge send to an application as per an aspect of an embodi-
ment of the present invention

[0014] FIG. 10B is an example of an example of a mixed
HTML and Javascript active challenge send to an application
as per an aspect of an embodiment of the present invention
[0015] FIG. 10C shows two examples of a Flash active
challenge send to an application as per an aspect of an
embodiment of the present invention

Sep. 17, 2015

DETAILED DESCRIPTION OF EMBODIMENTS

[0016] Embodiments of the present invention detect mal-
ware using a transparent proxy.

[0017] Spyware is a type of malware that may be installed
on computers and collects bits of information at a time about
users without their knowledge. The presence of spyware is
typically hidden from the user and may be difficult to detect.
Typically, spyware is secretly installed on the user’s personal
computer. While the term spyware suggests software that
secretly monitors the user’s computing machine, the func-
tions of spyware extend well beyond simple monitoring. Spy-
ware programs may collect various types of personal infor-
mation, such as Internet surfing habits and sites that have been
visited, but may also interfere with user control of the com-
puter in other ways, such as installing additional software and
redirecting Web browser activity.

[0018] In response to the emergence of spyware, a small
industry has sprung up dealing in anti-spyware software.
Running anti-spyware software has become a widely recog-
nized element of computer security practices for computers,
especially those running Microsoft Windows. A spyware pro-
gram is rarely alone on a computer. An affected machine
usually has multiple infections. Users frequently notice
unwanted behavior and degradation of system performance.
A spyware infestation may create significant unwanted CPU
activity, disk usage and network traffic. Stability issues, such
as applications freezing, failure to boot and system-wide
crashes, may also be common. Spyware, which interferes
with networking software commonly causes difficulty con-
necting to the Internet.

[0019] Many programmers and some commercial firms
have released products dedicated to remove or block spyware.
Anti-spyware software programs may be used solely for
detection and removal of spyware software that has already
been installed onto the computer. With this spyware protec-
tion software, the user may schedule weekly, daily or monthly
scans of the computer to detect and remove any spyware
software that has been installed on the computer. This type of
anti-spyware software scans the contents of the windows
registry, operating system files and installed programs on the
computer and may provide a list of any threats found, allow-
ing the user to choose what should be deleted and what should
be kept.

[0020] Such programs may inspect the contents of the Win-
dows registry, the operating system files, and installed pro-
grams, and remove files and entries which match a list of
known spyware components and signatures. Real-time pro-
tection from spyware works similarly to real-time anti-virus
protection: the software scans disk files at download time and
blocks the activity of components known to represent spy-
ware. In some cases, diction programs may also intercept
attempts to install start-up items or to modify browser set-
tings. Because many spyware and adware are installed as a
result of browser exploits or user error

[0021] Like most anti-virus software, many anti-spyware/
adware tools require a frequently-updated database of threats
and signatures. As new spyware programs are released, anti-
spyware developers discover and evaluate them, making “sig-
natures” or “definitions” which allow the software to detect
and remove the spyware. As a result, anti-spyware software is
of limited usefulness without a regular source of updates.
Some vendors provide a subscription-based update service,

US 2015/0264059 Al

while others provide updates free. Updates may be installed
automatically on a schedule or before doing a scan, or may be
done manually.

[0022] Current solutions to spyware are notoriously weak.
The model that has been adopted is the on-host anti-virus
model. Anti-spyware solutions attempt to determine the pres-
ence of spyware by searching for known signatures of the
spyware executable by searching the disk. This approach
suffers from multiple problems. First, like anti-virus engines,
spyware signatures need to be comprehensive and kept up to
date. While the updating mechanisms generally work fine,
even the best spyware solutions have not been able to be
comprehensive, in other words they often times miss many
forms and instance of spyware. The second problem is that
many forms of spyware do not run as an isolated executable.
They are often packaged with some other executable, such as
a free music player or content viewer. Spyware tool vendors
usually do not include these other commercial entities on the
list of spyware. In other instances, spyware runs as browser
helper objects—an extension to the browser itself. Third,
on-host solutions may be easily compromised by the very
content they are trying to detect. The convergence of root-kits
with spyware is making on-host solutions unreliable for
reporting on what is on the computing machines. The root-
kits may effectively hide portions of the file system and run-
ning process from any user-level process that is inquiring. As
a result, the antispyware and other on-host defenses may not
be trusted to fulfill their function reliably.

[0023] Current approaches to identifying software include
tools such as fpdns, Nessus, and Nmap. However, generation
of signatures using these tools is manual and arduous as the
signatures are extremely fragile. As a result, automatic fin-
gerprinting algorithms are developed leveraging other work
such as those used to fingerprint computer worms. On-the-fly
fingerprinting is used to positively identify the source of all
network flows, and therefore detect known and unknown
forms of malicious software. The passive network tap
approach is a clientless/agentless approach that is far more
amenable to commercialization than on-host approaches that
require massive deployment roll-outs, which many IT depart-
ments may be reluctant to purchase. Thus, techniques that
simply plug into a network router or gateway and are able to
classify network traffic to detect both known and unknown
malicious software have a clear advantage over on-host
approaches.

[0024] Finally, in the commercial sector, network extrusion
detection products are emerging as a sub-category in network
defense. Existing tools provide facilities for packet capture,
such as using Cisco standard PCAP libraries for examining
network flows as well as TCP Dump-like utilities for exam-
ining packets. However, these tools suffer from an over-
whelming amount of data that an analyst must review in order
to determine whether an infection has occurred in the net-
work, and as such are not very useful for detecting malicious
software threats. Rather, they are used more often for forensic
analysis after an infection has been detected by a host-based
detection agent.

[0025] Therefore, there is a need to develop a method and
system for implementing malware detection and reporting. In
particular, there is a need for the capability to capture mal-
ware without on-host installation of anti-spyware software on
every computing machine. Frameworks based on examining
out-bound network connections for malware detection are

Sep. 17, 2015

more efficient and easier to manage and are considered in the
embodiments of this invention.

[0026] Passive detection analysis techniques analyzing
outbound traffic fall short in detecting all known and
unknown malware on an enterprise computer machines. To
show this a test was carried out on an enterprise with HTTP
and Voice over IP (VoIP) protocol including fully centralized,
peer-to-peer, and hybrid implementations of the SIP protocol.
The results aimed at identifying malware generated by
Google feed by analyzing the normal, legitimate behavior of
known applications. In one example tested scenario, sixty
four percent of the port numbers of the detected malware
belong to HTTP and HTTPS. Twenty-eight percent belong to
Internet Relay Chat (IRC), and eight percent belong to other
applications.

[0027] Passive detection may identify a good fraction ofthe
malware that is collected in an enterprise network, but may
not identify all of them. In this test, the passive analysis
techniques were not able to detect more than sixty percent of
malware. On the other hand, the active content challenge
techniques as presented in the embodiments of this invention
have hundred percent detection rate with the tested malware
corpus.

[0028] The range of the ports that the malware attempts to
exploit has shifted towards HTTP and HTTPS traffic from
pure IRC traffic that was prevalent couple of years ago. Extru-
sion detection approaches today largely depend on malware
to use anomalous ports for command and control or to exfil-
trate data. However, current malware is shifting its command
and control and data link to the http/https protocol where
firewalls and current extrusion detection approaches may be
ineffective.

[0029] Furthermore, passive analysis, although still effec-
tive, may become obsolete in the future. Using purely passive
techniques, only below forty percent of malware may be
detected, while using the proposed embodiments of the
present invention with active content challenges, hundred
percent of the malware may be detected.

[0030] Indeed, purely passive network analysis is theoreti-
cally and practically unable to recognize malware that “mim-
ics” good/known web browser behavior using the original
software’s libraries because malware s often uses communi-
cation libraries of the vetted application to masquerade its
communication patterns and bypass the passive analysis. This
limitation of the passive techniques may be generalized for
known applications and protocols. This limits the effective-
ness of purely passive detection techniques for a next genera-
tion malware.

[0031] To address the limits of the passive techniques and to
ferret out malware that mimics the traffic behavior of legiti-
mate applications, embodiments of the present invention uti-
lize active detection mechanism(s). The active detection
mechanism(s) may also be called Active Content Challenges
and may be implemented using a transparent proxy. FIG. 1
shows the architecture of a network using an embodiment of
the transparent proxy in an Enterprise network 120 including
workstations (100 and 109) and laptops (110 and 119). The
architecture may be fully transparent and may not require any
application or network modifications both for client applica-
tions and servers and may accommodate various protocols
including HTTP, encrypted HTTP (HTTPS protocol) and
VOIP protocols. The transparent proxy 130 may mediate all
traffic both encrypted and non-encrypted when an application
initiates a communication with a server (141, 142, ..., or 149)

US 2015/0264059 Al

connected to Internet 140 outside the enterprise. Communi-
cation may pass through the firewall while being examined
and analyzed by the transparent proxy 130.

[0032] FIG. 2 shows an embodiment of a transparent proxy
202 in a laptop or workstation 200. The transparent proxy 202
may mediate all traffic both encrypted and non-encrypted
when an application 201 initiates a communication with a
remote server 204 connected to Internet 203.

[0033] The transparent network proxy (130 and 202) may
intercept outbound requests and issue Active Content Chal-
lenges to the requesting application. The principle is similar
to Turing puzzles and CAPTCHAs, however, rather than try-
ing to distinguish a human from software, the objective is to
distinguish legitimate software from malware. Thus, unlike
existing mechanism that demand end-users to be involved in
the identification process by solving a puzzle, the approach in
this embodiment requires no user involvement or application
modification.

[0034] Using passive analysis, all out-bound network traf-
fic may be analyzed. Prior art has focused on detecting in-
bound malicious software or traffic. Approaches have
included using known signatures, generating signatures from
repetitive features that would be present in worm-based
attacks to anomalous flow detection. Because the approach
used in embodiments of the present invention characterize
network traffic, traffic searching may not need to be per-
formed for finding malicious traffic. Rather, network traffic
may be classified by its originating program based on a fin-
gerprint developed using network-level analysis including
header information such as timing and source/destination
addresses and ports. Moreover, the HTTP headers’ ordering
and special HTTP headers may be harnessed to identify
known browser applications and decide which bucket that
program falls in, including: traffic from an already encoun-
tered program, known netted malware and unknown traffic.
[0035] FIG.3isablock diagram of a transparent proxy 313
according to an aspect of an embodiment of the present inven-
tion. The transparent proxy 313 for malware detection may
include a monitor module 303, a protocol determination mod-
ule 304, a challenge generation module 305, a response deter-
mination module 306, and a data control module 302. The
transparent proxy may include interfaces for receiving and
transmitting applications traffic 300 and remote server traffic
301. The transparent proxy 313 may be located on a network
edge 120 or on a laptop or workstation 200 and may examine
outgoing traffic.

[0036] The monitor module 303 may examine traffic 309
including first data 310 originating from at least one applica-
tion (201, 400, and 600) running on a computing machine
(100 and/or 200) towards a remote server (141, 142, .. . 149,
204, 402 and/or 602). The application (201, 400, and 600)
may expect a server response (408, 606 and 607) from the
remote server (141, 142, . . . 149, 204, 402 and/or 602). The
application (201, 400, and/or 600) may be one of the follow-
ing: a Web browser, a VOIP application, a peer-to-peer appli-
cation, a database client, a database server or the like. The
monitor module 303 may output the received data traffic on a
data interface 310 to the protocol determination module 304.
[0037] The protocol determination module 304 may be
configured to identify the protocol type 307 used for the first
data 310 generated from one of the applications (201, 400
and/or 600). The protocol determination module 304 may use
protocol fingerprinting to identify the protocol type 307. The
protocol type 307 may be one of the following: a HTTP, a

Sep. 17, 2015

VOIP protocol, a Session Description Protocol, a Session
Initiation Protocol, a Real Time Transport Control Protocol or
the like.

[0038] The challenge generation module 305 may: produce
a challenge 311 for the application (201, 400 and/or 600)
based upon the protocol type 307; send the challenge 311 to
the application; and maintain a state related to the data 310
and the challenge 311. The challenge generation module 305
may be further based upon the state of the application (201,
400 and/or 600) when the state of the application (201, 400
and/or 600) is transmitting the first data 310. The challenge
311 may be non-disruptive to the application (201, 400 and/or
600) and may be transparent to users. As an example, the
application (201, 400 and/or 600) may be a Web browser 801
and the challenge 805 may be an encoded redirect request that
is triggered after a page is processed by the targeted Web
browser 801 engine.

[0039] The response determination module 306 may make
a determination if an automatic non-interactive application
response 308 is received in response to the challenge 311
from application (201, 400 and/or 600). The application
response 308 may not involve the end application user.
[0040] The datacontrol module 302 may allow the first data
received on interface 300 to continue to the remote server
(141, 142, . . . 149, 204, 402, and/or 602) through interface
301 when the determination is valid. The first data control
module 302 may block the first data to continue to the remote
server (141, 142, . . . 149, 204, 402 and/or 602) when the
determination is invalid.

[0041] The data control module 302 may receive an allow-
ance 312 to allow the server response 606 from the remote
server (141, 142, . . . 149, 204, 402 and/or 602) received on
interface 301 to be transmitted to the application 600 through
interface 300 when the determination is valid. The data con-
trol module 302 may block the server response 607 from the
remote server (141, 142, . .. 149, 204, 402 and/or 602) to be
received by the application 600 when the determination is
invalid.

[0042] The transparent proxy 313 may also include a mal-
ware classification module 350 to determine malicious soft-
ware 355 running on a computing machine (100, 109, 110,
119 and 200) and a reporting module 340 to report 345 mali-
cious software running on the computing machine (100, 109,
110, 119 and 200). The malware software 355 is determined
by analyzing the first data 301, the application type (201, 400,
and 600), and the automatic non-interactive application
response (405 and 605).

[0043] FIG. 4 is a diagram showing a malware detection
message flow in a transparent proxy 401 communicating with
an application 400. The application 400 attempts to commu-
nicate and send a data message 403 to a remote server 402
through the transparent proxy 401. The transparent proxy 401
may monitor all outgoing application traffic and determine
the protocol type used by the application sending the mes-
sage. The transparent proxy 401 may generate an active con-
tent challenge 404 which may be created based on the proto-
col type used by the application and the data message type.
The active content challenge 404 harnesses the inherent
application and protocol capabilities by making use of one or
more of the inherent application and protocol behavior and
state diagrams.

[0044] By making use of the application’s rendering
engine, the transparent proxy may effectively distinguish
between malicious and benign network traffic. The active

US 2015/0264059 Al

content challenge 404 may not be visible to the users at all
since its content may only be related to the application. If the
application successfully replies to the active content chal-
lenge by sending message 405, the transparent proxy may
determine that the data was generated from a valid applica-
tion. Malware requests may be revealed if the malware soft-
ware is not able to generate a valid response to the active
content challenge. If a valid response is not received within a
predetermine time period, the transparent proxy 401 may
detect the malware and may block the data message 407 and
report that malware is detected on the computing machine
running the application as shown in scenario 2 in FIG. 4. In
this case, the remote server may not receive the blocked data
message. If a valid response is received from the application
400, the transparent proxy 401 may forward the data message
406 to the server and allow server response 408 to be received
by the application as shown in scenario 1 in FIG. 4.

[0045] The end-user may not need to be involved in the
process. A seamless user experience may be offered with
virtually no delays in most cases. Malware may be revealed if
it is unable to generate a valid response to the active content
challenge but rather attempts to re-connect to the same or
another alternate server unsuccessfully. Therefore, in general,
the core of this approach frustrates the communication of the
malware by injecting traffic that malware is incapable of
parsing and generating a valid response contrary to the legiti-
mate application.

[0046] FIG. 5 is a diagram showing a malware detection
process in the transparent proxy. The transparent proxy may
examine data originating from at least one application 501
and hold data transmission to the server 502. The transparent
proxy may identity protocol type 503 and produce a chal-
lenge for the application based upon the protocol type 504 and
send the challenge to the application 505. The transparent
proxy may store a state related to the data and the challenge
506. The transparent proxy may make a determination if an
automatic non-interactive application response is received in
response to the challenge from the application 508. The appli-
cation response may not need to involve the end application
user. The transparent proxy may allow data transmission to
the remote server when the determination is valid 509 and
may block the data transmission to the remote server when the
determination is invalid 507.

[0047] FIG. 6 is another diagram showing a malware detec-
tion message flow in a transparent proxy 601 communicating
with an application 600 in an alternative embodiment. The
application 600 may attempt to communicate and send a data
message 603 to a remote server 602 through the transparent
proxy 601. The transparent proxy 601 may monitor all out-
going application traffic and determine the protocol type used
by the application sending the message. The transparent
proxy 601 may generate an active content challenge 604
which may be created based on the protocol type used by the
application and the data message type. The active content
challenge 604 may harness the inherent application and pro-
tocol capabilities by making use of one or more of the inher-
ent application and protocol behaviors and state diagrams.
[0048] By making use of the application’s rendering
engine, the transparent proxy may effectively distinguish
between malicious and benign network traffic. The active
content challenge 604 may not be visible to the users at all
since its content is only related to the application. If the
application successfully replies to the active content chal-
lenge by sending message 605, the transparent proxy may

Sep. 17, 2015

determine that the data was generated from a valid applica-
tion. Malware requests may be revealed because it may not be
able to generate a valid response to the active content chal-
lenge. If a valid response is not received within a predeter-
mine time period, the transparent proxy 601 may detect the
malware and may block the server response 607 and report
that a malware is detected on the computing machine running
the application as shown in scenario 2 in FIG. 6. In this case,
the application may not receive the blocked server response.
If a valid response is received from the application, the trans-
parent proxy 601 may forward the server response 606 to the
application as shown in scenario 1 in FIG. 6.

[0049] The end-user may not need to be involved in the
process. A seamless user experience may be offered with
virtually no delays in most cases. Malware may be revealed if
it is unable to generate a valid response to the active content
challenge but rather attempts to re-connect to the same or
another alternate server unsuccessfully. In general, the core of
this approach frustrates the communication of the malware by
injecting traffic that malware may be incapable of parsing and
generating a valid response contrary to the legitimate appli-
cation.

[0050] FIG. 7 is a diagram showing a malware detection
process in the transparent proxy. The transparent proxy may:
examine data originating from at least one application 701;
identify protocol type 703; produce a challenge for the appli-
cation based upon the protocol type 704; and send the chal-
lenge to the application 705. The transparent proxy may store
a state related to the data and the challenge 706. The trans-
parent proxy may make a determination if an automatic non-
interactive application response is received in response to the
challenge from the application 708. The application response
may not need to involve the end application user. The trans-
parent proxy may allow the server response to be transmitted
to the application when the determination is valid 709 and
may block the server’s response to the application when the
determination is invalid 707.

[0051] Malicious software running in an enterprise may
exfiltrate data or command and control communication chan-
nels of an application. The transparent proxy 313 may clas-
sify and identify the malicious software by examining pro-
gram network traffic. Current approaches search for
malicious software by identifying signatures of known
attacks, but the approach presented in embodiments of the
present invention validate all out-going network sessions
based on their application network behavior. This approach is
two pronged: (1) the network characteristics of applications
may be passively examined using a set of transparent proxies
located on the network edges that use protocol fingerprinting;
and (2) in addition to pure passive monitoring, the transparent
proxy 313 may create active content challenges to software
applications to differentiate legitimate from sophisticated
malware. This approach may be non-disruptive to applica-
tions and transparent to application users. The process
attempts to reveal the sophisticated malware by both classi-
fying applications that are known to be good from applica-
tions that are either unknown or known to be malicious.

[0052] The network-based proxy 313 may automatically
examine all network traffic 309 emanating from the enterprise
through Internet egress points. The transparent proxy may
also belocated on a workstation or laptop and simply examine
all outgoing traffic from the workstation or laptop. The trans-
parent proxy successfully differentiates different browsers

US 2015/0264059 Al

(Internet Explorer, Firefox, Opera) from malicious software
by passively analyzing their outbound traffic.

[0053] Sophisticated malware that imports browser com-
ponents, such as Internet Explorer, may be detected using
Active Content Challenges. The transparent proxy may also
be capable of classitying and identifying malicious software
that may affect VoIP protocols, including Session Initiation
Protocol (SIP), Session Description Protocol (SDP), Real-
time Transport Control Protocol (RTCP), Real-time Trans-
port Protocol (RTP), or the like. The transparent proxy in the
embodiments of the present invention could differentiate dif-
ferent VoIP implementations including Asterix, sipX, PBX,
and Skype.

[0054] The modules implemented in the transparent proxy
may be a hardware based network apparatus that sits in par-
allel with the Internet gateway router to identify all traffic
emanating from the enterprise network 120 and identify all
outgoing sessions as authorized, malicious, or unknown, and
then take actions accordingly. For example, the transparent
proxy may route malicious or unknown traffic to a separate
honey pot server, or simply block the connection, or report the
malware software in the network. The process may provide a
solution to identifying any and all malware in an enterprise
that attempt to make outside connections via the Internet.
[0055] By categorically identifying network traffic emanat-
ing to the Internet as known good, malicious or unknown, the
transparent proxy may identify computing machines within
an enterprise that are compromised and may be under the
command and control of an outside entity or malicious soft-
ware. Some differences over the on-host-based solutions
include:

[0056] 1) Embodiments may have an agentless/clientless
passive network solution that obviates the need for an enter-
prise-wide roll-out, which may be very expensive. Also, with
an agentless solution, there may be no need to worry about
stepping on or being stepped on by other client-side software
such as anti-virus software. There may be no need to worry
about affecting the reliability of users’ computing machines.
[0057] 2) There may not be a need for update signatures on
all the computing machines in an enterprise. Some embodi-
ments may not require signatures, though signatures may
enhance the identification of known malware. Any signature
updates occur may only need to be applied to one machine—
the transparent proxy. In embodiments of the present inven-
tion, signatures may be automatically created through an
automated fingerprinting approach for network traffic.
[0058] 3) Fingerprinting all network traffic emanating from
the enterprise network may identify all known good, known
bad and unknown traffic. In this approach, signatures may no
longer be necessary in finding malware, and merely provide
additional information about the found netted malware.
[0059] 4) Since the transparent proxy may not need to be on
each computing machine, it may not be susceptible to being
subverted or manipulated by rootkits or other on-host pro-
cess-hiding evasion techniques. Rather, the transparent proxy
may detect the netted malware when it attempts to commu-
nicate to the Internet preventing it from exfiltrating data,
propagate, receive new targets or even update itselfto the new
version. All of the aforementioned activities may be detected
and potentially further analyzed by moving the malware to
execute on a controlled environment.

[0060] As an example, FIG. 8 is a diagram showing a mal-
ware detection message flow in a transparent proxy 802 com-
municating with a Web browser application 801 downloading

Sep. 17, 2015

apage from a Web server 803. The Web browser 801 attempts
to communicate and fetch a page from the network by sending
the message GET page.html 804. The transparent proxy gen-
erates an active content challenge 805 using a unique, random
hash in response to the request 804. The active content chal-
lenge harnesses the inherent browser capabilities by making
use of one or more of the HTML, Javascript, Flash, and
graphics rendering engines. The challenge 805 is an encoded
redirect request that is triggered only after the page is pro-
cessed by the targeted browser engine(s). By making use of
the browsers rendering engine, the transparent proxy may
effectively distinguish between malicious and benign net-
work traffic. The injected code may not be visible to the users
at all since the generated page has no content to display, but
rather includes a redirection request. Only if the client appli-
cation successfully replies to that request by sending message
806, the Web browser may be allowed to receive its initial
fetch request response 807 from the remote server. Malware
requests may be revealed because it may not be able to gen-
erate a valid response to the active content challenge. Ifa valid
response is not received within a predetermine time period,
the transparent proxy 803 detects the malware and may block
servers response 807 and report that malware is detected on
the computing machine.

[0061] Inaddition to passive analysis for HTTP, the active
content challenge process may be performed on the existing
Voice Over IP clients and servers and their legitimate protocol
behavior and characteristics. To that end, a passive analysis
may be performed on the network behavior of the VOIP
clients identified by their order of headers and other commu-
nication characteristics. FIG. 9A has a summary of features
that may be used to detect and classify popular VoIP clients
based on the order used in the network protocol headers.

[0062] Furthermore, variations in the way that clients
implement the “FROM” and “TO” fields are identified to
characterize some of the clients. FIG. 9B is a table showing
classification of different VoIP clients based on the “FROM”
and “TO” fields observed on their network communications.
These variations may be used to passively identity the VOIP
protocol clients. More distinguishing features may be devel-
oped to classify legitimate VoIP clients including the “User-
Agent”, “Audio Codec” and “Status Code”.

[0063] As shown here, active content challenge algorithms
may be developed for various different protocols such as
HTTP, HTTPS, RTP, VoIP protocols and the like. The trans-
parent proxy framework may be updated on a continuing
basis for adding new outbound network protocols. Passive
fingerprinting techniques may be sufficient to differentiate
multiple VoIP protocols, as well as standard malware that
may attempt to impersonate VoIP. However, sophisticated
malware may re-engineer, or co-opt an off-the-shelf VoIP
product to exfiltrate data. To handle this case, active content
challenges may be implemented that actively query VoIP
requests with puzzles that may only be solved by non-coopted
legitimate software.

[0064] Thepassive and active challenge approaches may be
integrated on the same transparent proxy for both HTTP and
VOIP protocols on a single platform. A framework may be
created for specifying protocols that the transparent proxy
would intercept and issue active challenges as required. The
list of protocols analyzed by the transparent proxy may
include HTTP, VOIP, and any other networking protocol as
required.

US 2015/0264059 Al

[0065] The transparent network proxy may be developed
on a hardware module. For example the transparent proxy
may be implemented as a network appliance in a rack-
mounted form factor. The transparent network proxy may be
considered as a hardware refactored for use in a variety of
different networked environments including Military, Gov-
ernment agency, commercial, and academic environments.

[0066] Active Content Challenges may be applied to appli-
cations using various protocols including: HTTP and Voice
Over IP (VOIP) protocols. VOIP protocols may include the
following four sub-protocols:

[0067] 1. Session Initiation Protocol (SIP), used to initiate
and setup the call.

[0068] 2.Real-time Transport Protocol (RTP), the Internet-
standard protocol for the transport of real-time data.

[0069] 3. Session Description Protocol (SDP), which
describes many elements of the RTP session.

[0070] 4. Real-time Transport Control Protocol (RTCP) is
employed to carry the control information: sender and
receiver session identifiers.

[0071] Active content challenges may be designed for all of
the above sub-protocols because a VOIP session may be
established in three different, but equally functional, logical
network topologies: fully centralized, peer-to-peer, and
hybrid. For each scenario and depending on the client used by
the sender and the receiver, a different active content chal-
lenge may be designed. An example set of supported clients
may have the most popular desktop SIP clients and soft-
phones including X-ten Lite, SJPhone, ekiga, linphone and
may be targeted for the following protocols: SIP, SIP/SDP,
RTCP, RTP.

[0072] The transparent proxy framework 313 may include
both passive and active malware detection algorithms. It may
be able to quickly sift through traffic attempting to detect if
the flow is generated from a malicious client using a combi-
nation of passive and active techniques. Each of these tech-
niques comes with a cost in terms of processing, memory, and
resources, which, for certain operating conditions (e.g. large
network lines) may quickly become prohibiting. There may
be a need for evaluating what is the optimal strategy to detect
malware for a given flow depending on the resources avail-
able and to achieve that, there may be a need to integrate
passive network analysis with Active Content Challenge
algorithms.

[0073] The transparent proxy detection engine may include
a framework that allows additional protocol specifications.
This component may be important to enable:

[0074] a) Including new protocols in the list of supported
protocols
[0075] b) Incorporating additional behavioral rules for pas-

sive and active content filtering

[0076] c¢) Formalizing and optimizing characteristics of
inspected protocols and defining them in a concise and
clean fashion.

[0077] The framework may be extensible by enabling the
inclusion of novel protocols and behavioral signatures to be
potentially generated by third parties. The same framework
for developing HTTP, HTTPS, and VOIP protocols may be
extended to accommodate other protocols. The transparent
network proxy may be a standalone hardware box that is
stable in operational environments, enabling a robust system
capable of running in diverse network environments. It may

Sep. 17, 2015

include a protocol specification framework to extend the
detection approach to other network protocols to the trans-
parent proxies.

[0078] Refactoring the system may start with a review of
the system design to identify and eliminate any redundancies,
to consider alternative architectures or methods, re-coding
functionality as necessary, then stubbing and unit testing,
followed by system testing the code for robustness. In addi-
tion, the transparent proxy processes may be optimized for
the state-of-the-art hardware including network cards,
memory, and processor. The transparent proxy may be a
stand-alone box in a rack-mounted network server form fac-
tor that is able to meet the operational requirements of enter-
prise-sized networks.

[0079] The transparent proxy may include multiple mod-
ules. Alternative communication methods may be considered
between the modules such as using shared memory for data
transfer or using the method of setting up server pipes. Archi-
tecturally, appropriate abstractions may also be considered to
ensure similar functionality may be re-used as well-tested
robust code. A detailed unit testing may be performed for each
module by stubbing out other modules and subjecting the unit
under test to the full range of possible input a module may
experience, as well as performing security tests to ensure
operation is robust against attack.

[0080] FIG. 10A shows an example of an HTML active
challenge send to an application as per an aspect of an
embodiment of the present invention. This example is con-
figured to: a) extract and parse the HTML statements from a
communication flow; b) functionally recognize an HTML
“refresh” primitive; and ¢) communicate a correct reply,
which is in this active challenge example may be “http://
requested-url [dot] com/?hash=0123456789” to a response
determination module. If the application receiving the active
challenge is capable of HTML extraction, parsing, and func-
tionally recognizing the “refresh” primitive, then a request of
“http://requested-url [DOT] com/?hash=012345678 may be
transmitted to the response determination module.

[0081] FIG. 10B is an example of an example of a mixed
HTML and Javascript active challenge send to an application
as per an aspect of an embodiment of the present invention. In
this JavaScript Redirection example, an application may need
to be configured to: a) extract and parse Javascript statements,
which in this active challenge are embedded in HTML; b)
functionally recognize a Javascript “window.location” primi-
tive; and ¢) communicate the correct reply, which is in this
active challenge example may be “http://requested-url [DOT]
com/?hash=0123456789”, to the response determination
module. If the application receiving the active challenge is
capable of HTML and JAVA extraction, parsing, and func-
tionally recognizing the “refresh” primitive then a request of
“http://requested-url [DOT] com/?hash=012345678 should
be transmitted to the response determination module.

[0082] FIG. 10C shows two examples of a Flash active
challenge send to an application as per an aspect of an
embodiment of the present invention. In these two Flash-
ActionScript examples of a Flash active challenge send to an
application, the application may need to be configured to: a)
extract and parse Flash statements; b) functionally recognize
the: (i) “getURL()” Flash primitive for ActionScript 1; and
(i1) navigateToURL()and new URLRequest()for Action-
Script 2; and ¢) communicate a correct reply, which is in this
active challenge example may be “http://requested-url [DOT]
conm/?hash=0123456789” to a response determination mod-

US 2015/0264059 Al

ule. If the application receiving the active challenge is capable
of FLASH extraction, parsing, and functionally recognizing
the “refresh” primitive then a request of “http://requested-url
[DOT] com/?hash=012345678” should be transmitted to the
response determination module. This active challenge may be
embedded in HTML or Javascript or a PDF document.
[0083] It should be noted that references to “an” embodi-
ment in this disclosure are not necessarily to the same
embodiment, and they mean at least one. In this specification,
“a” and “an” and similar phrases are to be interpreted as “at
least one” and “one or more.”

[0084] Many of the elements described in the disclosed
embodiments may be implemented as modules. A module is
defined here as an isolatable element that performs a defined
function and has a defined interface to other elements. The
modules described in this disclosure may be implemented in
hardware, hardware in combination with software, firmware,
wetware (i.e hardware with a biological element) or a com-
bination thereof, all of which are behaviorally equivalent. For
example, modules may be implemented as a software routine
written in a computer language (such as C, C++, Fortran,
Java, Basic, Matlab or the like) or a modeling/simulation
program such as Simulink, Stateflow, GNU Octave, or Lab-
VIEW MathScript. Additionally, it may be possible to imple-
ment modules using physical hardware that incorporates dis-
crete or programmable analog, digital and/or quantum
hardware. Examples of programmable hardware include:
computers, microcontrollers, microprocessors, application-
specific integrated circuits (ASICs); field programmable gate
arrays (FPGAs); and complex programmable logic devices
(CPLDs). Computers, microcontrollers and microprocessors
are programmed using languages such as assembly, C, C++or
the like. FPGAs, ASICs and CPLDs are often programmed
using hardware description languages (HDL) such as VHSIC
hardware description language (VHDL) or Verilog that con-
figure connections between internal hardware modules with
lesser functionality on a programmable device. Finally, it
needs to be emphasized that the above mentioned technolo-
gies are often used in combination to achieve the result of a
functional module.

[0085] The disclosure of this patent document incorporates
material which is subject to copyright protection. The copy-
right owner has no objection to the facsimile reproduction by
anyone of the patent document or the patent disclosure, as it
appears in the Patent and Trademark Office patent file or
records, for the limited purposes required by law, but other-
wise reserves all copyright rights whatsoever.

[0086] While various embodiments have been described
above, it should be understood that they have been presented
by way of example, and not limitation. It will be apparent to
persons skilled in the relevant art(s) that various changes in
form and detail can be made therein without departing from
the spirit and scope. In fact, after reading the above descrip-
tion, it will be apparent to one skilled in the relevant art(s) how
to implement alternative embodiments. Thus, the present
embodiments should not be limited by any of the above
described example embodiments. In particular, it should be
noted that, for example purposes, the above explanation has
focused on the example(s) of a transparent proxy located on a
network gateway or firewall. However, one skilled in the art
will recognize that embodiments of the invention could be
located on any network computer workstation or laptop and
monitor outgoing traffic. In another embodiment, the trans-
parent proxy may be implemented in a distributed framework

Sep. 17, 2015

including multiple hardware components, or be installed on
an existing network gateway and firewalls.

[0087] Inaddition, it should be understood that any figures
which highlight the functionality and advantages, are pre-
sented for example purposes only. The disclosed architecture
is sufficiently flexible and configurable, such that it may be
utilized in ways other than that shown. For example, the steps
listed in any flowchart may be re-ordered or only optionally
used in some embodiments.

[0088] Further, the purpose of the Abstract of the Disclo-
sure is to enable the U.S. Patent and Trademark Office and the
public generally, and especially the scientists, engineers and
practitioners in the art who are not familiar with patent or
legal terms or phraseology, to determine quickly from a cur-
sory inspection the nature and essence of the technical dis-
closure of the application. The Abstract of the Disclosure is
not intended to be limiting as to the scope in any way.
[0089] Finally, it is the applicant’s intent that only claims
that include the express language “means for” or “step for” be
interpreted under 35 U.S.C. 112, paragraph 6. Claims that do
not expressly include the phrase “means for” or “step for” are
not to be interpreted under 35 U.S.C. 112, paragraph 6.

1.-20. (canceled)

21. An apparatus, comprising:

a memory; and

a hardware processor operatively coupled to the memory

and configured to implement a challenge generation
module at least partially stored in the memory and a
malware classification module at least partially stored in
the memory,

the challenge generation module configured to produce an

active content challenge for an application executing at
acompute device, the challenge generation module con-
figured to send the active content challenge to the appli-
cation,

the malware classification module configured to identify

the application as malware based at least in part on not
receiving, in response to the active content challenge, a
valid automatic non-user-interactive application
response from the application within a predetermined
time period.

22. The apparatus of claim 21, wherein the challenge gen-
eration module is configured to produce the active content
challenge based on a protocol type associated with a datum
received from the application.

23. The apparatus of claim 21, wherein the malware clas-
sification module is configured to identify the application as
malware based at least in part on (1) a datum received from
the application, (2) a type of the application and (3) not
receiving, in response to the active content challenge, the
valid automatic non-user-interactive application response
from the application within the predetermined time period.

24. The apparatus of claim 21, wherein the hardware pro-
cessor is configured to implement a data control module at
least partially stored in the memory, the data control module
configured to block transmission of data from the application
to a network based on the malware classification module
identifying the application as malware.

25. The apparatus of claim 21, wherein the hardware pro-
cessor is configured to implement a data control module at
least partially stored in the memory, the data control module
configured to block transmission of data to the application
from a network based on the malware classification module
identifying the application as malware.

US 2015/0264059 Al

26. The apparatus of claim 21, wherein the challenge gen-
eration module is configured to produce the active content
challenge based on an application state of the application.

27. The apparatus of claim 21, wherein the active content
challenge is configured to test an expected function of the
application.

28. An apparatus, comprising:

achallenge generation module implemented in at least one
of'a memory or a processing device, the challenge gen-
eration module configured to produce an active content
challenge for an application executing at a compute
device, the challenge generation module configured to
send the active content challenge to the application;

a response determination module configured to determine
if, in response to the active content challenge, a valid
automatic non-user-interactive application response is
received from the application within a predetermined
time period;

a data control module operatively coupled to the response
determination module, the data control module config-
ured to send a datum originating from the application
and addressed to a remote server to the remote server
when the valid automatic non-user-interactive applica-
tion response is received from the application within the
predetermined time period,

the data control module configured to block the datum
from being sent to the remote server when the valid
automatic non-user-interactive application response is
not received from the application within the predeter-
mined time period.

29. The apparatus of claim 28, wherein the challenge gen-
eration module is configured to produce the active content
challenge based on a protocol type associated with the datum.

30. The apparatus of claim 28, wherein the challenge gen-
eration module is configured to produce the active content
challenge based on an application state of the application.

31. The apparatus of claim 28, wherein the active content
challenge is configured to test an expected function of the
application.

32. The apparatus of claim 28, further comprising:

a malware classification module configured to identify the
application as malware based at least in part on (1) the
datum, (2) a type ofthe application and (3) not receiving,
in response to the active content challenge, the valid
automatic non-user-interactive application response
from the application within the predetermined time
period.

Sep. 17, 2015

33. The apparatus of claim 28, wherein the data control
module is configured to block transmission of data to the
application from the remote server when the valid automatic
non-user-interactive application response is not received
from the application within the predetermined time period.

34. The apparatus of claim 28, wherein the application is at
least one of a web browser application, a Voice over Internet
Protocol (VoIP) application, a peer-to-peer application, a
database client application, or a database server application.

35. The apparatus of claim 28, wherein the challenge gen-
eration module is configured to produce the active content
challenge based on a protocol associated with the datum, the
protocol is at least one of a Hypertext Transfer Protocol
(HTTP), an HTTPS protocol, a Voice over [P (VoIP) protocol,
a Session Description Protocol (SDP), a Session Initiation
Protocol (SIP), or a Real-time Transport Control Protocol
(RTCP).

36. A method, comprising:

generating an active content challenge for an application

executing at a compute device, the active content chal-
lenge being associated with an application type associ-
ated with the application;

sending the active content challenge to the application;

classifying the application as malware when a valid auto-

matic non-user-interactive application response is not
received from the application (1) in response to the
active content challenge and (2) within a predetermined
time period; and

restricting network traffic associated with the application

when the application is classified as malware.

37. The method of claim 36, wherein the active content
challenge is configured to test an expected function of the
application.

38. The method of claim 36, wherein the generating
includes generating the active content challenge based on a
protocol type associated with a datum received from the
application.

39. The method of claim 36, wherein the application type
associated with the application is at least one of web browser,
Voice over IP (VoIP), peer-to-peer, database client, or data-
base server.

40. The method of claim 36, wherein the generating
includes generating the active content challenge based on an
application state of the application.

#* #* #* #* #*

