a9 United States

GHOSH et al.

US 20150212842A1

a2y Patent Application Publication o) Pub. No.: US 2015/0212842 Al

43) Pub. Date: Jul. 30, 2015

(54) ON-DEMAND DISPOSABLE VIRTUAL WORK

(71)

(72)

(73)

@

(22)

(63)

(60)

SYSTEM

Applicant: GEORGE MASON RESEARCH
FOUNDATION, INC., Fairfax, VA (US)

Inventors:

Anup K. GHOSH, Centreville, VA

(US); Sushil JAJODIA, Oakton, VA
(US); Yih HUANG, Fairfax, VA (US);
Jiang WANG, Fairfax, VA (US)

Assignee:

GEORGE MASON RESEARCH

FOUNDATION, INC., Fairfax, VA (US)

Appl. No.:

Filed:

Related U.S. Application Data

14/482,786

Sep. 10, 2014

Continuation of application No. 12/037.,412, filed on

Feb. 26, 2008, now Pat. No. 8,856,782.

Provisional application No. 60/892,318, filed on Mar.

1,2007.

Publication Classification

(51) Int.CL
GOGF 9/455 (2006.01)
(52) US.CL
CPC .. GOGF 9/45533 (2013.01); GO6F 2009/45575
(2013.01)
(57) ABSTRACT

An on-demand disposable virtual work system that includes:
a virtual machine monitor to host virtual machines, a virtual
machine pool manager, a host operating system, a host pro-
gram permissions list, and a request handler module. The
virtual machine pool manager manages virtual machine
resources. The host operating system interfaces with a user
and virtual machines created with an image of a reference
operating system. The host program permissions list may be
a black list and/or a white list used to indicate allowable
programs. The request handler module allows execution of
the program if the program is allowable. If the program is not
allowable, the host request handler module: denies program
execution and urges a virtual machine specified by the virtual
machine pool manager to execute the program. The virtual
machine is terminated when the program closes.

Host Machine Virtual Pood Yirtual Machine | Virtug! Wachine Yirtual Machkine
144 Management 60 174 1580
I M
&ppé%ﬁaﬁomﬁ
1 Yia mg Protecied || Protentod -I ?mms::%c;m}
42 Management Applications spptications Applications
st 0% Litilities
152 162 : v
144 182 182 122 | |gge |l 122
oy Management Guest 05 Guest D5 Guest 08
Guest 08 |1 08
reforence 164 164 i74 194
imageis)
145
Yirtual Machine mionitor
130

Computer Hardwarg

k1]

US 2015/0212842 A1l

Jul. 30, 2015 Sheet 1 of 13

Patent Application Publication

b Aunoid
R
sagmpiel soyrhuin
(i 4%
AOPBOUE BUIISRHE BN
551
s {siabipun
BET 7% BET BT DRI
£03 YEANG B3 1BRN5Y ©ry 159Ny uamualivuey
7ET ese 71 757 Z51 W
_ BRI 563 150K
suoneonddy suoneaddy suopeoddy wswabivuey 5T
msiwm_ﬁ@w&m W‘&ﬁﬁuﬁ@& Vwa@ﬁa& M.E. WA -
susiyesydd
651 poyosyosdury
BuIRp | bt
a5t 1741 HETA suswabouey 13N
BUILDRYY feniA BUILORYY [BTLHA | SLILDRYY [BILIA jo04 BNLIA BUYBY 18504

US 2015/0212842 A1l

Jul. 30, 2015 Sheet 2 of 13

Patent Application Publication

¢ Funid

1142

BABMAREEE Ao

GEL

FOYUOW SURIDEYN JOTALA

VEe
50
sbhzime
WsysIssag

[11:74
BRI
sBriog

WIRYS IS

B o rine g

B%e
aboanig

pEVE AR R T B

Avnrmnnrrone

70
S0 35005
254

guoppanddy
W&m@w@ﬁg&

I
DUIDRRY JENLIA

%o

rrmrnsrrnone

nnnnnonnnon

[£4 FL
8 seng 50y JER0E
FA 251
suoneaddy guonesiddy
W%aﬁﬁm&@& M__sswﬁmﬁ@&
Bt i1

BUIOER] [BALIA

SUNDBYY [ENLIA

174
inbioueyy

o WA
7%
{siabivi
BIUBIBEDE
wmmw 1Ban0

i

S0 180

422

suopesnddy
g&wﬁa&mm

i

SUIOBI 1808

US 2015/0212842 A1l

Jul. 30, 2015 Sheet 3 of 13

Patent Application Publication

€ NSl
iy
BABMALAEY AOIntAn Dy
Pl
winyshs Bunessdo 15064
174
AL mMMWwﬁ IBrLA ibeuepy
' , . 100 WA
744 i YA i1 (1174
BUIDEY SIS BURIZEN BUBRISBY BRIV §
jeraip, jerig, JEIAA YR, s | (speBeuy
V61 vt Vit = V. laousiaen
sOIsens g agll $03%00ng | S0y 1 5035805 1 S0ISNS 1L (100 ang)
761 Th: Zii Z50 85z
444
winyshe
{aaspo) {aaigo) {1es) {tgam) a4 JemAALL dopiseg
suopesyddy suoneoyddy) isuoneogddy | suoneoddy] sunoeg 150

LI E

413
prempaeL pntduier

US 2015/0212842 A1l

%5

wisyshyg Bunriado 1804

i34

FU0UE BUIIDBYY FRILIA

Jul. 30, 2015 Sheet 4 of 13

PEL ¥l
e R Ly S0 sBng
47 giv
SDIpUBH 15anbon sppuny yeonbay

SO Jseng

NN%J v

9%z
sabeuryy j00d WA |
waMﬁ. = %wwmw
‘ i ABIPUEL 1890108y - £

¥

W B AR B S Y NG A Sn A N S e e

(437

sdde paRsu-Un -
BSOS GO~
18 S ,
mmw 13T}
(i1
BUILIRE BN

50 30 300 0 90708 50 30 X 0000 20 350 el

A AR R 0 2020020 XK 90 90 30 M
T

R /- At
pagpsapumgy
HOORNC -
sdde pagou-uop -
SHBNAING B~

151 BUUAA

W 10¢ 46 50 Y W OC G0 0D W W PGS ATIRS

{ppeus)
123

DX O BN BB N Qe N e R
R

®

DUIOBYY [ENIIA

./ 8P

wipupl 1sanbey

Wt 6 56 50 e M4 OF BB 20 W

AR S R B R

m&mwﬁwx
ROYOME -

sdde paneI- UK -

BAAISG T -

=y auuss

oy A W 5 0 R, e 5 e o0

{1ammosg gom)
(214
UL [RNLIA

@kﬁsié

‘hm-neu-w‘wm-«n@mw\\n\uﬂ

»»mmw»im\\»»»m

*

R
ysonbos 3 wmww

e 0 205 5 00 0 s V00 K i bl 0 o 45 90 50 30

{paysnig)
s1ide pausu-uoN -

SYHAIDG L0 .m\)
161 SUUAL m/awv

G B N A 0 OB A G e e B

«ooao»u

[444
Ho1sar] 1504

Patent Application Publication

US 2015/0212842 A1l

Jul. 30, 2015 Sheet 5 of 13

Patent Application Publication

% 3uNSid

B Youne] 985

. ; ; il “. WA
BN Jj sodn Msmwww\ \ suoin

5ig
b {s)abuny
LY WA Japsey

s e w0 00 W o gl

pEu youney (2%

..@&
m.@mmwm@m R wm@m@

e PUy

%
¥
E
%
&
%
%
]

F4:1 IDEROIG YounET) bi%

\ sesmog / SO9N w%m.,\w \ suo

¥ %
paodaipe J

WA &N -
pas

BOLRIBLIOY) PIA PURRIBCT- U

9 IUNDIL

US 2015/0212842 A1l

S : 255 :

3
o # % 4 5
5 2 : :
2 55 P P dsyppeg

WA S)
N w e,
a ! : 518
E 555 : :
J .
Mw M o : e PIRRAATIN YA 10 B0 WD
“ ﬁ 4 .
n % ! # Lmsmoag gom youne o3 ©8 &
S : s suBvssaus pasaspes
b § s
s : ¥
%

E A Y o4 ;o ues
~— % 4
S v o 5% ! :
= G 1590k CoIsl o
= R ot BUDIREDE
< ayetdoadde 0) sy I mmw IS
m MOIIRO0ALY FPMIS URUG Bunosipey
&
[~W

US 2015/0212842 A1l

Jul. 30, 2015 Sheet 7 of 13

Patent Application Publication

(174
%mwmm& HO0 o &m.

By H
“IBypUEL =
ysanbon
' I 85 1
LEnpurid v
P 1esnbay 172
: e VIR
w@ggm
: Z6F ; T5%
Povsy : sy
| BYUM, B

gwwggm

(1

U SUIDEYY JRIALA

it
7 BUILSEI [ERLIA

b0 a5 5 5 @ s 85

327

mﬁ
gsanbon

M

081
1 SO (BNLA

%$§§?%$$i

spuey 1senboy

'i

P

Nw@,

K (174

“uanhon

‘aw»a&»ﬁm

%
UNBer] 180

Patent Application Publication

Jul. 30, 2015 Sheet 8 of 13

Local Maching
48

galls

N X 66 00 50 56 A W RV

Reguest Handler

448

Redirgction
madule
848

RS

W

i}ispnmr
848

Looal OF
144

4%
)

¥ ?s@%b&%magar

248

FIGURE 8

US 2015/0212842 A1l

Remuote
Yirtual
&, Machine

180

US 2015/0212842 A1l

Jul. 30, 2015 Sheet 9 of 13

Patent Application Publication

6 <N

e] e |

| L1eoxd] paons !

oeE |

mﬁ% wymed

lreysnay) . |

_ BIBWNIOC]

(B4AB e

878

sofi A

pnod unow
il

$76

575

(e ou) 2yDED JVISIBIS]

g 6
sBugien pue SIBUInIo sy wesbosy

¥i8

gattd wesbosy

48
GRADRIIAA

US 2015/0212842 A1l

Jul. 30, 2015 Sheet 10 of 13

Patent Application Publication

0L Junoid

A
ahwioye
Bii B0

1211
iV E L

§§§§§§§§§

00000 00 4R R VLRR BB A DR W0 00 0

888888888

BT
afivioys

USBIBIBIB

Lo BT %01
BYUL . usuodinn |
SBOR WBPUBH B csasoe [T

» e ¥sanbay :
LR IUDINY BHE JUBYT

auoL

uonesddy
EAI]S

BU{IE [RNLIA

Patent Application Publication Jul. 30,2015 Sheet 11 of 13 US 2015/0212842 A1
Virtual Machine Pool Manager
248
Black List
1138
Deasignated | Sas@nateg
Application | Machine
1122 1124
Pool ﬁﬁamgr Confrofisr 4454
1110 ‘ L Most
request Raguest
fw*’é 152 Handlsr
authorization ,
448
1483 ‘
' L Gontrod
‘ System commands Parsel
jw‘ﬁ 184 | Application
System sialus
yatom slatus E 1430
' 1188
\ 'l Vi Bonitor
VM siatus
f«% 158
Vi commands 5\
@ 130

FIGURE 11

Patent Application Publication Jul. 30,2015 Sheet 12 0of 13 US 2015/0212842 A1

Create a Virtual Machine
1288

Install operating sysiom and say destrad applications on
the virtual machine
1858

i

Create 8 whitelist for the virtps! machine
288

:

Make o suapshot image of the virtual machine
4270

| 1

Classify the snapshot buage
1288

Y

Move the snapshot mage (o persisiont storage
1280

FIGURE 12

Patent Application Publication Jul. 30,2015 Sheet 13 0of 13 US 2015/0212842 A1

Crente z first ¥M
a2ig
Downlond softwarg/pateh {o st Y
1380
Ferform an integrity check on the software/pateh
1430
Save the software/patch (o persistent storage

1340
FIGURE 13A

Cregte g second Virtual Machine
1358
Install new soltwars/pateh en the secend VM
1358

ARNARRARRRAARAR

\

Update whitelist for the ssvond VM to include the new
seftwarefpateh
1360
Make 2 snapshotl image of the sevond VM
3378
L4
Classify the snapshot buage
3380

Meove the snapshot huage to persistent sforage

390
FIGURE 13B

US 2015/0212842 Al

ON-DEMAND DISPOSABLE VIRTUAL WORK
SYSTEM

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0001] FIG. 1 is a block diagram of the architecture of an
aspect of an embodiment of the present invention.

[0002] FIG. 2 is a block diagram of the architecture of an
aspect of an embodiment of the present invention.

[0003] FIG.3is ablock diagram of an aspect of an embodi-
ment of the present invention.

[0004] FIG. 4 is a block/flow diagram of an aspect of an
embodiment of the present invention.

[0005] FIG. 5 is a diagram showing on-demand virtual
machine cloning as per an aspect of an embodiment of the
present invention.

[0006] FIG. 6 is a diagram showing the redirection of
online sessions as per an aspect of an embodiment of the
present invention.

[0007] FIG.7 is a diagram showing message passing as per
an aspect of an embodiment of the present invention.

[0008] FIG. 8 is a diagram of a request handler module as
per an aspect of an embodiment of the present invention.
[0009] FIG.9is a diagram of an example file system as per
an aspect of an embodiment of the present invention.

[0010] FIG. 10 is a diagram showing persistent storage
access as per an aspect of an embodiment of the present
invention.

[0011] FIG. 11 is a diagram of a virtual machine pool
manager as per an aspect of an embodiment of the present
invention.

[0012] FIG.12is a flow diagram of the creation of a virtual
machine image as per an aspect of an embodiment of the
present invention.

[0013] FIG. 13A is a flow diagram of the download of a
software patch as per an aspect of an embodiment of the
present invention.

[0014] FIG. 13B is a flow diagram of the updating of a
virtual machine image with a software patches per an aspect
of' an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

[0015] Embodiments of the present invention are designed
to effectively eliminate most Internet-enabled compromises
of computer system security. The system and approach
present a radical departure from current information security
tools and practices and current computing practices. Where
today’s information security tools and practices focus either
on building better software or filtering mechanisms such as
firewalls to prevent remote exploitation or building tools to
detect compromises, the invention described here provides a
safe environment for running Internet-connected software
and obviates the need for perfect software. The system pro-
vides an environment in which intrusions or compromises
present a limited threat to the host system or other software
and user data.

[0016] The embodiments work by launching a virtual
machine for each Internet-enabled or untrusted application
that is started. The virtual machine provides a pristine guest
operating system (OS) for the Internet-enabled or untrusted
application that is launched. This operating system may be an
operating system unmodified from the original version deliv-
ered by the manufacturer or other version suitably configured

Jul. 30, 2015

for the task of running intended applications. The virtual
machine and its guest operating system may be temporally
limited to exist only for the duration of the session of the
application. When the user exits the application, the virtual
machine can be destroyed. For the duration of the session, the
virtual machine provides an isolated environment from the
host machine from which it is launched. The virtual machine
provides a level of isolation from the host machine that is the
equivalent to running a physically separate machine from the
host machine. The virtual machine is essentially a sacrificial
machine that lives only for the duration of the application
session. Any attacks that occur on the machine via an Internet
connection can compromise only the virtual machine that is
started up for that session. When the session is terminated, so
is the virtual machine and the compromise. With each new
session, a pristine new virtual machine is started up, meaning
that any malicious software that was downloaded or planted
during a prior session is no longer present. The underlying
host operating system does not need to maintain an Internet
connection. As a result, Internet-based attacks have a very
limited ability to compromise the host operating system.

[0017] Embodiments of the invention can also implement
persistent storage mechanisms for the cases that data either
needs to survive the destruction of a temporary virtual
machine or needs to be communicated to an entity external to
the temporary virtual machine. Access to persistent storage
may be made using an authentication procedure to prove to
the system that the access is approved by a user and not a
malicious program. Alternatively, access to persistent storage
can be made by creating a shared directory to the host oper-
ating system, but restricting guest operating system access
only to the shared directory on the host operating system. For
high assurance, the authentication mechanism may be as
simple as a mouse click in response to a dialog box, or as
complex as a detailed Turing test.

[0018] Using the presently described technology, users
may no longer have to worry about securing their systems
with additional tools (such as firewalls, personal firewalls,
spyware detectors, rootkit detectors, and intrusion detection
systems), or even patching their systems with the latest daily
or weekly patch from the software manufacturers to patch the
latest bug in their software system. However, it should be
noted that this system is not incompatible with these tools and
can use these tools to provide health status information on the
virtual machines created for an application session. This rep-
resents a radical departure from current arms race between
computer system attackers and defenders. In addition, it pre-
sents a new computing paradigm for desktop operating sys-
tems. Currently, Internet-enabled applications run side-by-
side with all other desktop and system software with the
privileges of the user. As a result, when a compromise occurs
through the Internet, the entire system can be compromised
by a single vulnerability in an Internet-enabled software such
as a Web browser or an email client. By simply browsing to a
Web page, a user can compromise their system. By down-
loading music or music players, a user can compromise their
system, sometimes irreversibly.

[0019] Using embodiments of the present invention, Inter-
net-enabled applications can each run on their own instance
of a guest operating system with a new user’s privilege iso-
lated from the host operating system and from other applica-
tions and data. As a result, any compromises that may occur
during the time window of the session is contained within the
guest operating system out of reach of the host operating

US 2015/0212842 Al

system and persistent data. Any software that is downloaded
during that session can be run without worry of compromis-
ing the host operating system or data. This includes spyware,
rootkits, and other types of malicious software. Any sort
malicious mobile code that runs in the Web browser should
only last only for the duration of the session. Even viruses
embedded in documents should not have access to other
documents, nor should they persist past the duration of the
session. At the conclusion of the session, the guest operating
system is killed as the virtual machine exits. All changes to the
software system are only temporary as the next time an appli-
cation is launched a pristine version ofthe guest OS is created.

[0020] Architecture

[0021] The approach to building the on-demand disposable
virtual work system uses core technology building blocks in
a novel computing paradigm involving dispatching tempo-
rary operating systems for each untrusted application. That is,
instead of launching the application natively from the host
operating system, untrusted applications may be started by
first launching a guest operating system in a virtual machine
that then starts the untrusted application. Untrusted applica-
tions, by default, can be any application that requires Internet
access or any application that is not on an organization’s
approved list of trusted programs. The invention, through this
method, handles the creation and management of virtual
machines and the automatic redirection of applications to
start in the virtual machine created for them.

[0022] FIG. 1 shows the architecture of an embodiment of
the present invention. The off-the-shelf components are com-
modity microprocessors, operating systems, software appli-
cations and virtual machine technology. The design can use
commodity personal computer 110 containing microproces-
sors including those based on the Intel/ AMD x86 family of
microprocessors and the PowerPC microprocessor. The
architecture uses the notion of a host operating system 144
and guest operating systems (164, 174 and 1940) that are
launched with each protected applications (162, 172 and
192). The architecture may support a variety of commodity
operating systems including Windows, Linux, and Mac OS,
in both the host operating system and the guest operating
system. In some cases you may run a Linux operating system
as a guest operating system on top of a Windows host oper-
ating system, and vice versa. The choice of operating systems
to use is determined by the applications to be launched based
on the operating system for which they were built. That is,
Windows guest operating systems are launched when a Win-
dows protected application is started and Linux operating
systems are launched with a Linux protected application is
started. Finally, the architecture may use commodity virtual
machine technology such as the Xen virtual machine monitor
(VMM) and VMware virtual machine monitor. Xen is a vir-
tual machine monitor for IA-32, x86-64, IA-64 and PowerPC
architectures. It is software that runs on a computer system
110 and allows one to run several guest operating systems on
top of the host on the same computer hardware at the same
time. Copies of Xen may obtained from www.xensource.
com.

[0023] Theembodiment of the architecture shown in FIG. 1
uses the standard virtual machine architecture with the Virtual
Machine Monitor (VMM) 130 running on the hardware 110,
and operating systems (144, 154, 164, 174, and 194) running
on top of the VMM 130. A host operating system (OS) 144 is
defined as the default machine the user normally uses and is
the machine whose desktop is presented to the user. Guest

Jul. 30, 2015

OSs (164, 174 and 194) are created by request when a pro-
tected application (162, 172 and 192) is launched, or created
in advance to enable higher performance when launching
protected applications (162, 172 and 192) into pre-instanti-
ated guest OSs (164, 174 and 194). A Management VM 150
may be bootstrapped along with the Host OS 144 and a
reference guest OS 145 that is used for clones of the guest OS
reference image 145. The Management VM 150 is used for
command, control, and lifecycle maintenance of the guest
OSs (164, 174 and 194) based on the instructions from the
host OS 144. The number of guest OSs instantiated may be
dependent on the number of protected applications launches
and the performance limits of the underlying hardware. The
VMM (130) and VM (150) should support live capture of the
full system state in a file for subsequent replay. This file is
called a “snapshot” of system state.

[0024] The host operating system 144 may be configured
for higher security so that it is unable to make Internet con-
nections itself. This can be enforced by a loadable kernel
module, a personal firewall, disabling the network protocol
stack of the host, or other means to restrict the IP address
space to which network connections can be made or accepted.
The loadable kernel module should guarantee that no appli-
cation on the host machine 140 can communicate to the
Internet. The guest operating systems (164, 174 and 194) may
be free to make direct Internet connections; however, they
should be restricted from freely accessing the host operating
system 144 by the virtual machine monitor 130 that runs in its
own hardware protection domain which provides hardware-
equivalent strong isolation between the virtual machine and
its host operating system. The guest operating systems (164,
174 and 194), which are pristine builds of the OS, should also
be “root secure”, which means that even if one of the guest
operating systems (164, 174 and 194) is compromised to a
root user level or the kernel itself is compromised, the host
operating system 144 itself should not be compromised by the
compromised guest operating system. Once a guest operating
system is destroyed (upon closure of the protected application
that started the guest OS), the compromise is now removed
from the system.

[0025] As mentioned earlier, a reference guest OS 145 may
be booted along with the host OS 144. A snapshot of the
reference guest OS 145 may be taken, then used to derive
subsequent VM images by cloning it, i.e., creating a replica
image of the reference guest OS. When a new untrusted
application is to be started, a dispatch instruction is sent from
the Host OS to the Virtual Pool Management Machine 150,
which then creates a VM for the application using the refer-
ence guest OS image, if the VM has not already been created.
By cloning and pre-booting reference images, the response
time for instantiating the application should be on par or even
faster than the usual response time for starting a new appli-
cation for users.

[0026] Concept of Operation

[0027] Embodiments of the present invention should be
largely transparent to the user in look, feel, and operation.
That is, the user need not be aware of the virtualization opera-
tion and its commensurate protections, except for authenti-
cated reads and writes to and from persistent storage from
protected applications. The system should boot as normal
with the native operating system as well as loading the VMM.
The guest OSs should be relatively invisible to the user, i.e.,
they run in the background. The user operates the computer as
he or she normally would, with the exception that no Internet

US 2015/0212842 Al

connections to the host operating system may be allowed.
When the user launches a “protected” application, that is one
defined in the IC configuration file as “protected”, then
instead of launching the application, the application may be
dispatched to one of the guest OSs running in the background.
Protected applications are nominally those defined with Inter-
net access, but may include other applications as configured
by the user to run in Guest OSs including standard desktop
computing applications. Applications not configured as pro-
tected, should run natively in the host operating system (144).
[0028] When a protected application is launched, whether
directly from the desktop by the user, by double-clickingon a
file with an application association, or by any other applica-
tion or other means, the process can be dispatched to the guest
operating system, and the corresponding application
launched in the guest OS. The fact that the application is
running in a guest operating system should be largely trans-
parent to the user, except for a possible windowing designa-
tion that indicates the application that in is running in the
protected mode environment, i.e., the guest operating system.
The guest OS may be created with application launch or may
already be instantiated and destroyed when the application
session is complete or when the user terminates the virtual
machine.

[0029] As described earlier, FIG. 1 shows an embodiment
of the present invention where virtual machines monitor 130
runs direct on computer hardware 110. In this embodiment,
every machine (140, 150, 160, 170 and 190) is essentially a
guest machine to the computer hardware. In this setup, the
unprotected host applications 142 run on the host machine
140 natively and the host operating system 144 runs these
applications 142. In contrast, the guest virtual machines 160,
170 and 190 run protected applications (162, 172, and 192
respectively) that may talk to a network under guest operating
systems (164, 174 and 194 respectively).

[0030] The guest operating systems 164, 174, and 194 are
each cloned from one of the guest operating system image(s)
145. The images 145 should be pristine snapshots of a run-
ning operating system. To increase speed, the snapshots may
also include running applications. For example, an image 145
of an operating system for an email virtual machine can
include a copy of an email application running under the
operating system.

[0031] The virtual pool management machine 150 runs a
series of virtual machine management utilities 152 under a
management operating system 154. These utilities 152
include functions that: create, destroy, put to sleep and wake
up virtual machines. The utilities also maintain a list that
matches applications to virtual machines. In other embodi-
ments, these same functions may be performed by pool man-
agement utilities running on a host machine. For example, in
FIG. 2 these functions are performed by virtual machine pool
manager 246.

[0032] FIG. 2 shows an embodiment of the present inven-
tion demonstrating some possible variations from the
embodiment of FIG. 1. As shown in this figure, the virtual
pool management machine 150 in FIG. 1 has been replaced
by virtual machine pool manager 246 running on the host
machine 240. Virtual pool management machine 150 and
virtual machine pool manager 246 may perform essentially
the same functions. However, in FIG. 2, these functions reside
solely on host machine 140.

[0033] As in FIG. 1, this embodiment also includes: a vir-
tual machine monitor 130 running directly on computer hard-

Jul. 30, 2015

ware 110; a host operating system 144; and a series of guest
virtual machines 160, 170 and 190. The host machine 140
should not be connected to any networks.

[0034] Additionally, the embodiment of FIG. 2 includes the
addition of persistent storage 258. The idea behind using a
persistent file storage 258 is to enable the temporary virtual
machines to save any documents or data that may be needed
later. The persistent file storage 258 may also be used as a
mechanism for safely passing information between the tem-
porary virtual machines. In this embodiment, the persistent
storage drive 258 is accessed through a persistent storage
machine 250. In this embodiment, the persistent storage
machine is a virtual machine file server running a persistent
storage operating machine. Commercial file server software
may be used in virtual machine 250. File server software for
Microsoft Windows machines may be obtained from Netpro,
Inc. of Phoenix Ariz. and file server software to run under
Linux may be obtained from Redhat Inc. of Raleigh N.C. This
is only an example of how persistent storage may be imple-
mented. For example, one could utilize a stand alone persis-
tent file server or the host operating system’s file system.
Additionally, persistent file storage may be located anywhere
in the organization on the network.

[0035] FIG. 3 shows another embodiment of the present
invention where the virtual machine monitor 130 is running
on the host operating system 144 rather than directly on the
computer hardware 110. In this embodiment, the host oper-
ating system desktop software 322 is used to interface the user
with the system as normal, and a series of guest virtual
machines 250, 160, 170, 380 and 190. The desktop 322 is
running on the host operating system 144. The host operating
system is running on the computer hardware 110 and the
virtual machine monitor 130 is running on the host operating
system 144. The guest virtual machines 250, 160, 170, 380
and 190 run in virtual machine environment controlled by
virtual machine monitor 130.

[0036] Each of the virtual machines has their own guest OS
(254, 164, 174, 384 and 194 respectively) which was cloned
from one of the reference OS image(s) 145. Although refer-
ence image(s) 145 are shown residing with the host operating
system 144, one skilled in the art will recognize that these
image(s) 145 could be located elsewhere. For example, they
could be stored directly in the computer hardware 110
memory or in an external disk drive or other type of persistent
storage device accessible by the host operating system 144.
[0037] As shown, several of these guest machines are dedi-
cated to specific applications. Machine 250 is dedicated to file
storage, machine 160 is dedicated to web applications 162,
virtual machine 170 is dedicated to email applications 172,
virtual machine 380 is dedicated to Microsoft office applica-
tions 382, and virtual machine 190 is dedicated as a “catch-
all” machine to run applications 192 not dedicated to other
machines. The designation of protected applications to guest
machines is configurable by users.

[0038] Recall that the host desktop 322 does not need to be
connected to a network. So, ifa user tries to run an application
on the host desktop 322 that requires network applications, it
may not be able to access the network.

[0039] The way the system works, a user interacts with the
host desktop 322. The applications on the virtual machines
run in the background. When a user goes to run a host allow-
able application (usually a non-network application), that
application is brought to the forefront of the display and run
on the host operating machine 144. When the user goes to run

US 2015/0212842 Al

a protected application (usually a networked application),
then that application should be intercepted and redirected to a
virtual machine dedicated for the application. The application
may then be brought to the forefront of the desktop 322 as it
is run on the guest virtual machine. If there is no virtual
machine dedicated for the application, then the applications
may be redirected to the catch-all virtual machine 190. In
some embodiments, the redirection of unspecified applica-
tions to a catch-all virtual machine 190 can be optional,
directed by a set of rules, or not allowed at all. In some
embodiments, the option to auto-restore the guest virtual
machines on a count-down timer is provided. After a user-
specified countdown timer times out, the Internet Cleanroom
software will automatically restore the guest machine back to
its pristine state to ensure periodic cleansing of the machines
to their initial pristine state. These options can provide differ-
ing levels of security.

[0040] FIG. 4 is a diagram shows an example of how an
application requests can be directed to an assigned machine.
Several new elements that are part of the system are shown in
this diagram. These new elements include optional white lists
(442,462, 472 and 492) and request handlers (448, 468, 478,
and 498).

[0041] The white lists (442, 462, 472 and 492) list applica-
tions and services that are allowed to execute on the machine
in which they reside. For example, white list 442, which
resides on the host desktop, does not list any internet appli-
cations, but does list local services and non-netted applica-
tions. White list 462 which resides on virtual machine 160
lists several internet browser applications as well as local
services and non-netted applications. White list 472 which
resides on virtual machine 170 lists several internet email
applications as well as local services and non-netted applica-
tions. White list 972 which resides on virtual machine 190 is
a catch-all machine, and as such does not exclude any internet
applications. These limitations defined in the white lists are
examples. A system could be set up to list any desired appli-
cations to run on a virtual machine. Described here is just a
suggested configuration.

[0042] The request handlers (448, 468, 478, and 498) per-
form several functions (not necessarily in the following
order). First, they intercept system calls. Second, they deter-
mine if calls should be forwarded. Third, where the calls
should be forwarded. And fourth, the request handlers for-
ward the calls. To determine where the calls should be for-
warded, the request handlers (448, 468, 478, and 498) may
examine white lists on their machine (442, 462, 472 and 492
respectively), and the virtual machine pool manager 246.
[0043] In this example, a user, interacting with the host
desktop 332 generates a request 443 to start up an instance of
Internet Explorer at 401. This request is intercepted by
request handler 448 at 402. The request handler 448 inspects
white list 442 at 403 and learns that Internet Explorer is not
allowed to run on the host 144. The request handler 448 then
queries the virtual machine pool handler 246 for a virtual
machine to forward the request to at 405. In this example, the
virtual machine pool handler 246 determines that the request
443 should be forwarded to virtual machine 160. If virtual
machine 160 was not running or awake, the virtual machine
pool handler 246 may send commands to the virtual machine
monitor to create or wake up the machine 160. Once the
virtual machine pool manager 246 believes virtual machine
160 is running, it responds back to request handler 448 to
forward the IE request 443 to virtual machine 160.

Jul. 30, 2015

[0044] At 406, request handler 448 forwards the IE request
443 to the guest operating system 164 on virtual machine 160.
The guest operating system 164 then forwards the IE request
443 to request handler 468 at 407. Request handler 468 which
will forward the request 443 to request handler 468. Request
handler 468 inspects white list 462 at 408 and learns that
Internet Explorer is allowed to run on the virtual machine 160.
Based on this knowledge, request handler 468 allows the
guest OS to start an instance of IE (463) at 409.

[0045] FIG. 5 shows the creation of on-demand virtual
machines (552, 554, 556, . . .) to handle all of the various
applications that need to be run. The system starts out with at
least one master virtual machine image 510. These images
should be pristine snapshots of running operating systems. In
some cases, the snapshot can include a running application.
[0046] At 520, copies of the virtual machine images 510
can be cloned onto the appropriate virtual machines 532, 534,
and 536. Once the machines are cloned, the operating system
may be booted and an appropriate application launched to
make the virtual machine an application specific virtual
machine. For example: cloned virtual machine 532 can be
booted with an OS and a browser launched at 542 to generate
a browser application specific virtual machine 552; cloned
virtual machine 534 can be booted with an OS and an email
application launched at 544 to generate an email application
specific virtual machine 554; and cloned virtual machine 536
can be booted with an OS and one or more office applications
launched at 546 to generate an office application specific
virtual machine 556.

[0047] For the sake of temporal efficiency, several virtual
machines may be started on a system and then put to sleep by
the virtual machine manager 130 until they are needed. This
may be a more efficient method of running a system due to the
fact that waking up a virtual machine may take less time than
creating one. Finally, the virtual machines 552, 554, and 556
may be disposed of at 560. This disposal may occur at differ-
ent times such as after the applications are closed, by user
request, or after a predetermined time limit. Disposal may be
done by numerous methods including reverting the virtual
machine back to its initial state or destroying it completely. In
some cases, a user may wish to examine the virtual machine
for possible contamination after running it. In this case the
virtual machine image may be moved to a secure site for
examination.

[0048] “One program at a time” means dedicating a virtual
machine to an application or type of application. So for
example, if we wish to dedicate a virtual machine to mail
applications, then this machine will be assigned to run as
many mail applications as a user may desire. This may be a
single instance of a mail application, or multiple instances of
the mail application. Using this scheme, all mail interactions
with an external network will be through a virtual machine
dedicated to processing mail applications.

[0049] FIG. 6 shows how a request handler can redirect an
application execution request. When you initiate an applica-
tion request, either on the host or on a guest Virtual machine
642, 644, or 646, that application request can be intercepted.
Interception may be performed using numerous utilities. An
example of a program that can be used to intercept requests on
Microsoft windows machine is Microsoft Detours. The inter-
cepted messages 610 may be redirected to the dispatcher 620.
The dispatcher 620 may use a program permissions list (ei-
ther host program permissions list or guest program permis-
sions list as appropriate). The program permissions list may

US 2015/0212842 Al

be a white list 650, a black list 652, or some combination
thereof. In the case of the white list 650, the dispatcher 620
may compare the redirected execution request 610 with the
white list 650. If it’s determined that the application associ-
ated with the execution request 610 is not on the white list
650, the intercepted messages 610 is redirected to the appro-
priate virtual machine (642, 644, or 646) using a remote
invocation call 630. This is done by the dispatcher 620 call for
the application to run on a remote machine by talking to a
dispatcher on that remote machine. In the case of the black list
652, the dispatcher 620 may compare the redirected execu-
tion request 610 with the black list 652. If it’s determined that
the application associated with the execution request 610 is
on the black list 652, the intercepted messages 610 is redi-
rected to the appropriate virtual machine (642, 644, or 646)
using a remote invocation call 630. This is done by the dis-
patcher 620 call for the application to run on a remote
machine by talking to a dispatcher on that remote machine.
[0050] Ifa white list 650 is in use and it is determined that
the application associated with the execution request 610 is
on the white list 650, the intercepted messages 610 are
directed to the local machine’s operating system for execu-
tion. If a black list 652 is in use and it is determined that the
application associated with the execution request 610 is not
on the black list 652, the intercepted messages 610 are
directed to the local machine’s operating system for execu-
tion.

[0051] FIG. 7 shows more detail on the communication
pathways between the host machine 140 and the guest virtual
machines (160, 170 and 190). Although the communication
channels may utilize many different techniques, this embodi-
ment is showing the use of pipe servers and socket servers.
The request handler 448 on the host is a client that is used to
send requests to the virtual pool manager 246 and to the guest
request handlers 468, 478, and 498. When a request to run a
local application 743 on the host is generated, the request 743
is directed through a logical pipe 745 to the host request
handler 448. The host request handler 448 inspects the host
white list 442 to determine if the application specified by the
request 743 is allowed to run locally or of it needs to run
remotely. In general, applications that are not capable of
accessing a network will be allowed to run locally while
applications that are network access capable will be required
to run remotely. This can be accomplished by keeping net-
work access capable applications off the host white list 442.
[0052] In the case that the request 743 is requesting an
application that is not on the host white list 442, the host
request handler 448 will communicate with the pool manager
246 through an internal pipe 742 to determine which guest
virtual machine (160, 170 or 190) the local application 722
needs to run on. The pool manager 246 then sends a message
to the host request handler 448, which will in turn send a
request 743 to the appropriate request handler (468, 478 or
498) through a socket communications channel (751, 752 or
753). In the case that the request 743 is requesting an appli-
cation that is on the host white list 442, the host request
handler 448 will attempt to create the process 749 by forward-
ing the request 743 to the local operating system.

[0053] A similar process occurs when a request (763, 773
or 793) is made on one of the virtual machines (160, 170 or
190). The request (763, 773 or 793) is intercepted by the local
request handler (468, 478 or 498) through an internal pipe
(765,775 or 795). The local request handler (468, 478 or 498)
will inspect the local white list (462, 472 or 492) to determine

Jul. 30, 2015

if the application specified by the request (763, 773 or 793) is
allowed to run locally or of it needs to run remotely. Appli-
cations that are on the white list (462, 472 or 492) will be
allowed to run locally while applications that not on the white
list (462, 472 or 492) will be required to run remotely.
[0054] In the case that the request (763, 773 or 793) is
requesting an application that is not on the host white list
(462, 472 or 492), the request handler (468, 478 or 498) will
attempt to communicate with the host request handler 448
through a socket communications channel (751, 752 or 753).
The host request handler 448 will communicate the request
(763,773 or 793) to the pool manger 246 through an internal
pipe 742 to determine which guest virtual machine (160, 170
or 190) the application needs to run on. The pool manager 246
then sends a message to the host request handler 448, which
will in turn send a request 743 to the appropriate request
handler (468, 478 or 498) through a socket communications
channel (751, 752 or 753). In the case that the request (763,
773 or 793) is requesting an application that is on the host
white list (462, 472 or 492), the local request handler (468,
478 or 498) should attempt to create the process (769, 779 or
799) by forwarding the request (763, 773 or 793) to the local
operating system.

[0055] The pool manager 246 should be configured to
know which machines run which applications. So, if for
example, a user makes a request 763 to run an email client
from a virtual machine 160 dedicated to running web brows-
ers, the email program will not be on the white list 462 of the
web browser machine. So the guest request handler 468 will
talk to the pool manager 246 through the host request handler
448 to determine which machine (170 or 190) should run the
email program. In some embodiments the host request han-
dler 448 can forward a request to start the email program
directly to the guest request handler 478 on the appropriate
guest virtual machine 170. In another embodiment, the pool
manager 246 can return to the guest request handler 468
through the host request handler 448 which machine (170 or
190) should run the email program and the guest virtual
machine 468 will forward the request directly to the appro-
priate web browser dedicated machine 478.

[0056] In the case that a request (743, 763 or 773) is made
on the host 140 or one of the application specific virtual
machines (160 and 170) that is for an application that is not on
one of their white lists (442, 462 or 472), the pool manager
246 can direct the request using the mechanisms just
described to a catch-all machine which could be 190.

[0057] FIG. 81isa diagram showing how the request handler
works. The request handler 448 on the host captures system
calls that come from applications. The redirection module in
the request handler determines if it’s a file access call or a
process creation call. If it’s a process creation system call,
then it consults a white list to determine if it’s allowed to run
locally. If' it is allowed to run locally, then the system call is
allowed to flow through and the process is created on the host.
Ifitis not on the white list then the dispatcher will redirect the
call to a remote machine determined by the pool manager
246. In the case of a file access, if the file access is to a local
drive on a local machine, then the file access is allowed to
execute as is. Ifit is to a mount point on the secure virtual file
system (SVFS), then the dispatcher will first seek approval
from the user via keyboard input, then given approval to
access the SVFS, the dispatcher will redirect the file access
system call to the SVFS machine, which is determined by the
pool manager 246.

US 2015/0212842 Al

[0058] FIG.9is a diagram showing an example file system
for a host or guest machine. The machines can have a local
drive 910 with a normal complement of directories 912, 914,
916, and 918 that should exist only for the length of the virtual
machine’s life. The machine may also have a mount point for
a persistent cache 920 containing data such as files 922,
cookies 924, application data 926 and desktop data 928.
These files provide temporary and dynamic data for several
applications such as web browsing to provide seamless expe-
riences between different application sessions. However,
since the data in this is not particularly valuable, no user
authentication or approval is required in this embodiment for
the guest virtual machines to access this persistent cache. In
this embodiment, the persistent cache is mounted from a
directory on a file server on the SVFS to all guest machines to
provide seamless application usage across sessions. In other
embodiments, the persistent cache can reside on another file
server. In addition, user approval or authentication can be
required in other embodiments for a guest VM to access this
cache.

[0059] To save data past the refresh or destruction of a
virtual machine, the virtual machine may desire to mount a
secure virtual file server (SVFES) 930. This device may be
used to store document data 932 such as Excel data 938,
Power Point data 936, and Word data 934. However, to ensure
that a legitimate user is only accessing this drive, it may be
desirable to make this a limited access file server using stan-
dard user password authentication techniques available with
most file servers.

[0060] Inmany cases, the limited access file server 930 can
require a user to authenticate themselves at least during their
first access, maybe more often. On a virtual machine, anytime
the user attempts to read from or write to (access) the persis-
tent file server 930, that access itself'is redirected. So, if a user
is on a guest machine tries to access the persistent file server
930, that access request can be redirected to the host machine.
The host can take a look at the access and the access is
interrupted. A pop up dialog box can ask the user for confir-
mation that they do indeed want to access the persistent file
server 930. One possible way to do this is with a mouse click
acknowledgment. Another way to make this acknowledge-
ment is by a keyboard stroke, requiring a password or PIN
authentication, or through the use of a Turing test solvable
only by a human. The acknowledgement verifies that the user
does want to access data. This should prevent malicious code
or users from writing files to persistent storage without the
console user’s permission. Likewise in order to retrieve files
from the persistent storage device to the guest OS, it may also
be advantageous to have the user authenticate the file trans-
action. In one embodiment, the approval once granted applies
to all file accesses to that file directory from that application
for that session. In another embodiment, each individual
access to that file may require user approval.

[0061] FIG.101is adiagram showing how the file access can
work. When applications 1030 working on a virtual machine
1020 attempt to access a file system, the file system access
system calls are intercepted by a request handler 1048. If the
file access is local or to the persistent cache 920, the system
call is allowed to execute as is and it stores or retrieves from
local file storage 1060 through the local OS 1044 or to the
persistent cache 920. If the file access is to a the SVFS mount
point, prior to letting that request go, the request handler 1048

Jul. 30, 2015

calls an authentication module 1050 which may require a user
to navigate a dialog box to approve the file system request in
order to prove to the system that they are not actually mali-
cious code. This navigation should allow a user to acknowl-
edge and approve the remote file access at which point the
request back on the virtual machine is allowed to create its
client connection through a client access component 1040 to
the persistent storage server 1010. The persistent storage may
be pointed to by the virtual machine pool manager 246. Then
the connection is made and the application 1030 is allowed to
read from or write to the persistent storage 1010. As an extra
measure of safety, it may also be advantageous for the per-
sistent file storage 1010 to utilize a firewall mechanism 1012
(or equivalent type mechanism) to filter out unwanted
requests.

[0062] FIG. 11 show the pool manager 246. The virtual
machine pool manager 246 runs on the host and is responsible
for resource management of the guest virtual machines. It
maintains a black list 1120 which lists which designated
applications 1122 run on which designated machines 1124.
For example the list can have an entry that designates that web
browsers run on a web browser specific virtual machine and
another entry that designates that office spreadsheet programs
run on an office spreadsheet specific virtual machine.

[0063] When an application is attempted to be run, the host
request handler 448 sends a request 1151 to run that applica-
tion to the virtual machine pool manager controller 1110
which will look at the request 1151 and determine if that
machine is currently running. It can do that by grabbing the
status 1155 of the virtual machine from the virtual machine
monitor 130. If it is not, then it will create that machine by
sending VM commands 1156 to the virtual machine monitor
module 130. If it is running, then it provides authorization
1152 to the host request handler 448 to execute the process
creation on the specified machine. A control panel 1130 may
also enable manual control over the virtual machine
resources. The control panel application should be able to
provide system commands 1153 to the pool manager control-
ler 1110 as well as receive system status 1154 from the pool
manager controller 1110.

[0064] The control panel 1130 gives the ability to create
and destroy virtual machines and refresh virtual machines
back to their original state. It can refresh virtual machines by
reverting the virtual machine to a previously saved snapshot
of'the guest operating system in a pristine state. Refresh ofthe
virtual machine is when a user for one reason or another
decides he wants to reset the state of the virtual machine back
to its initial pristine state. For example, good reasons to
refresh amachine include: a virus having been detected on the
virtual machine, or the virtual machine has just been open for
too long (thus increasing the possibility of a contamination).

[0065] Insome cases, ifit is a web browser, you could save
the address and return to the location. However, in many
cases, the purpose of a refresh is to get the machine back to a
safe condition. So for example, if a user were browsing at a
celebrity site that might contain possibly damaging content,
the user probably would not want to return to the site because
of'its possible negative effects on the system, but would rather
start fresh with a new pristine machine.

[0066] Other functions of the pool manager controller 1110
include: add virtual machines of particular types such as a
windows virtual machine, a Linux virtual machine or a varia-

US 2015/0212842 Al

tion of those. We could create a windows virtual machine with
office running or create a windows virtual machine with an
email application running. This can give a user control when
they create a new virtual machine to designate what kind of a
virtual machine to create including an isolated virtual
machine that has no access to the internet or no access to
persistent storage or some combination thereof.

[0067] When the machine starts up, it can consult a con-
figuration file. The configuration file can instruct the pool
manger controller how many virtual machines to create. How
many are going to run live, how many are going to be put
asleep in the virtual machine pool. And their configuration file
can provide user interface locations to allow a user to desig-
nate some of these parameters to their liking or for the best
performance of the machine.

[0068] The user can also through the control panel 1130
designate parameters for the black list 1120. So they can say
which machines 1124 they want to run which applications
1122 and that can be used to update the black list 1120. A user
might designate that they always want to have a Microsoft
Office machine and further designate what applications they
run on that machine that is created at startup.

[0069] The status 1156 of the virtual machine can also
convey the security status of the virtual machines. For
example, audit logs created by commercial security tools
(like antivirus or root kit detectors) can be captured. When a
violation of a virtual machine is detected, then that status can
be used to update the control panel 1130 to inform the user
that they have a machine where a compromise has been
detected. The control panel 1130 can then be used to refresh
or kill that virtual machine. Likewise, one could also keep
track of the amount of time that a guest OS in a virtual
machine has been open. If it has been open for too long, the
status can be changed from green to yellow, or yellow to red.
This can give a user an indication that it is time to refresh a
virtual machine. Of course, one skilled in the art will recog-
nize that these types of response actions could also be auto-
matic.

[0070] FIG. 12 is a flow chart shows actions that may be
taken to create a new operating system reference image 145.
First, one should create a virtual machine (1250). Preferably,
this virtual machine is not connected to a network or appli-
ance that could corrupt the virtual machine or any software
loaded on it. An operating system and any desired applica-
tions may be loaded and configured on the virtual machine
(1250). A white list should be created that lists all of the
loaded software and any other software that may be allowable
to run on the currently set up arrangement (1260). A snapshot
image 145 can be made of the configured system (1270). The
snapshot may be classified at (1280). The classification
should allow a user or system to identify the image 145. This
may be particularly useful when a series of images 145 are
created for use on different virtual machines. The classifica-
tion may be made part of the image 145 (such as in an
identifying header), or kept separate from the image 145.
Finally, the snapshot image may be moved to persistent stor-
age at 1290 for use by the virtual machine pool manager 246
when it creates new virtual machines.

[0071] Inadditionto creating a reference image 145, it may
be desirable to also be able to allow a user to update or patch
the image. FIG. 13A is a flow diagram showing how to safely
download new software (or software patch) to embodiments
of'the virtual work system for further use. To start this process
out, one should attempt to acquire a clean copy of the new

Jul. 30, 2015

software or patch. In the case that the software is distributed
on a trusted media such as a CD, that media may be used
directly. However, some software and patches need to be
downloaded from a network. To do this, one may create a
clean virtual machine that can connect to a network for the
purpose of downloading software or patches at (1310). The
software or patch may then be safely downloaded at 1320. If
desired, one could perform an integrity check on the software
or patch by checking its MDS5 hash or its digital signature
released with the software ore patch by the software vendor.
A user may copy the software or patch to persistent storage at
1340 for further use by a host or guest machine.

[0072] FIG. 13B is a flow diagram showing how to create a
new operating system reference image 145 using the down-
loaded software or software patch. A second virtual machine
may be created at 1350. The new software or patch may be
loaded into that virtual machine at 1350. Although it may be
desirable to ensure that the loaded software is in pristine
condition, the software or patch can be loaded from any
source including the persistent storage or other computer
readable storage medium (e.g. a CD, DVD, flash drive, etc.).
The white list that is associated with the new image can be
updated to reflect the new changes to the image at 1360. A
snapshot of the virtual machine may also be taken at 1370 of
the system with the new configuration. Like before, it may
also be desirable to reclassify this new image at 1380. Finally,
the snapshot may be copied to persistent storage at 1390 for
further use by a host or guest machine.

[0073]

[0074] VMMs today are used to run multiple operating
systems side by side on the same hardware to provide support
for different operating systems (Windows and Linux) or to
provide guarantees of separation between different classifi-
cation levels in multi-level secure (MLS) military applica-
tions. In the multi-level secure system configuration, each
operating system is configured to provide a separate comput-
ing platform with the net effect of combining multiple com-
puters on a single hardware platform. It is functionally
equivalent to having multiple computers on your desk—each
operates independently, but all share the same hardware.

[0075] The approach described here uses virtual machine
technology as a means for launching applications each in
their own guest operating system to provide strong guarantees
ofisolation for that application. Rather than running different
operating systems independently, the presently described
approach is to run each application in its own virtual machine,
thus providing strong guarantees of security while providing
transparence to the user experience that a different machine is
running. Another key difference is that under the MLS
scheme, the machines are persistent. Once compromised by
malicious code or attack, the MLS machine can potentially
remain compromised. The window of exposure to attack is
also equivalent to current desktop systems. That is as long as
the machine remains connected to the network, it remains
exposed to attack. In the embodiments described here, the
machines are transient. The machines can last only for the
duration of the application session. After the application ses-
sion is complete, the machine may be killed and the window
of'exposure terminated. Furthermore, a “clean” machine may
be started on each new application session, which means any

Comparison to State of the Art

US 2015/0212842 Al

changes made to the machine during a prior session, e.g., by
malicious code or attack, are no longer present in the current
instantiation.

[0076] Another relevant point of comparison is to software
“wrapper” or mediation technology. Software wrappers are
used today to “wrap” or encapsulate an application with a
prophylactic layer of software redirection calls that mediate
access to system resources. The wrappers can enforce a policy
that is written for each application. The idea behind software
wrappers is that you can constrain an application’s behavior
from malicious use of the system by mediating its access to
the system. It requires a software mediation infrastructure
that runs on top of the host OS.

[0077] The approach of the embodiments described here is
fundamentally different in how it approaches this problem.
Rather than “wrapping” an application, the embodiments cre-
ate a whole new machine in which it runs the protected
application. Failures in the policy definition and implemen-
tation in the wrapping layer of the wrapper technology can
lead to a compromised system. The IC system involves no
wrapping and is in fact root secure. Meaning that failures in
the application’s security that result in the complete compro-
mise of the system running the application will not compro-
mise the host system. Also, one of the most vexing problems
in wrapper/mediation approaches is the requirement to define
a policy for each application and the fact that many multi-
functional applications such as Web browsers cannot be
effectively constrained because of the wide range of function-
ality they must possess to be effective. In the currently
described approaches, no policy definition or constraints are
necessary. The application has full access to the machine it
runs on with no residual consequences.

[0078] While various embodiments have been described
above, it should be understood that they have been presented
by way of example, and not limitation. It will be apparent to
persons skilled in the relevant art(s) that various changes in
form and detail can be made therein without departing from
the spirit and scope. In fact, after reading the above descrip-
tion, it will be apparent to one skilled in the relevant art(s) how
to implement alternative embodiments. Thus, the present
embodiments should not be limited by any of the above
described exemplary embodiments. In particular, it should be
noted that, for example purposes, the above explanation has
focused on the example(s) of personal data. However, one
skilled in the art will recognize that embodiments of the
invention could be used where more than one application is
run within a Virtual machine running a guest OS.

[0079] In addition, it should be understood that any figures
which highlight the functionality and advantages, are pre-
sented for example purposes only. The disclosed architecture
is sufficiently flexible and configurable, such that it may be
utilized in ways other than that shown. For example, the steps
listed in any flowchart may be re-ordered or only optionally
used in some embodiments.

[0080] Further, the purpose of the Abstract of the Disclo-
sure is to enable the U.S. Patent and Trademark Office and the
public generally, and especially the scientists, engineers and
practitioners in the art who are not familiar with patent or
legal terms or phraseology, to determine quickly from a cur-
sory inspection the nature and essence of the technical dis-
closure of the application. The Abstract of the Disclosure is
not intended to be limiting as to the scope in any way.
[0081] Finally, it is the applicant’s intent that only claims
that include the express language “means for” or “step for”’ be

Jul. 30, 2015

interpreted under 35 U.S.C. 112, paragraph 6. Claims that do
not expressly include the phrase “means for” or “step for” are
not to be interpreted under 35 U.S.C. 112, paragraph 6.

1-24. (canceled)

25. An apparatus, comprising:

a request handler module implemented in at least one of a
memory or a processor, the request handler module con-
figured to receive a request to execute a program on a
host operating system,

the request handler module configured to determine, in
response to the request, that the program does not have
permission to execute on the host operating system and
outside a virtual machine; and

a virtual machine manager operatively coupled to the
request handler module, the virtual machine manager
configured to select a guest virtual machine based on a
program type associated with the program,

the request handler module configured to send the request
to the guest virtual machine such that the guest virtual
machine executes the program.

26. The apparatus of claim 25, wherein the virtual machine
manager is configured to initiate the guest virtual machine in
response to selecting the guest virtual machine.

27. The apparatus of claim 25, wherein the program is a
first program,

the request handler module configured to send a request to
execute a second program to the guest virtual machine
such that the guest virtual machine executes both the
second program and the first program during a time
period, the second program being associated with the
program type.

28. The apparatus of claim 25, wherein the program is a
first program and the guest virtual machine is a first guest
virtual machine,

the request handler module configured to send a request to
execute a second program to a second guest virtual
machine such that the second guest virtual machine
executes the second program, a program type associated
with the second program being different than the pro-
gram type associated with the first program.

29. The apparatus of claim 25, wherein the request handler
module is configured to determine that the program does not
have permission to execute on the host operating system and
outside a virtual machine based on a whitelist associated with
the host operating system not including an identifier associ-
ated with the program.

30. The apparatus of claim 25, wherein the request handler
module is a first request handler module, the first request
handler module being associated with the host operating sys-
tem, the apparatus further comprising:

a second request handler module, the second request han-
dler module being associated with the guest virtual
machine, the second request handler module configured
to receive from the program a request to access a persis-
tent storage associated with the guest virtual machine,
the second request handler module configured to allow
the program to access the persistent storage in response
to a user authenticating the request to access the persis-
tent storage.

31. The apparatus of claim 25, wherein the program is a

first program,

the request handler module configured to receive a request
to execute a second program on the host operating sys-
tem,

US 2015/0212842 Al

the request handler module configured to determine, in
response to the request to execute the second program,
that the second program has permission to execute on the
host operating system and outside a virtual machine.
32. An apparatus, comprising:
a memory; and
a hardware processor operatively coupled to the memory
and configured to implement a request handler module
at least partially stored in the memory and a virtual
machine manager at least partially stored in the memory,

the request handler module configured to receive a request
to execute a program on a host operating system, the
request handler module configured to determine, in
response to the request, that the program does not have
permission to execute on the host operating system and
outside a virtual machine,

the virtual machine manager operatively coupled to the

request handler module, the virtual machine manager

configured to select a guest virtual machine for the pro-

gram, the virtual machine manager configured to per-

form at least one of:

define the guest virtual machine;

put the guest virtual machine to sleep;

terminate the guest virtual machine;

wake-up the guest virtual machine;

receive the request to execute the program from the
request handler module; or

respond to the request to execute the program from the
request handler module,

the request handler module configured to send the request

to the guest virtual machine such that the guest virtual
machine executes the program.

33. The apparatus of claim 32, wherein the hardware pro-
cessor is configured to implement a virtual machine monitor,
the virtual machine monitor configured to host the guest
virtual machine on the hardware processor.

34. The apparatus of claim 32, wherein the virtual machine
manager is configured to select the guest virtual machine for
the program based on a program type associated with the
program.

35. The apparatus of claim 32, wherein the request handler
module is a first request handler module, the first request
handler module being associated with the host operating sys-
tem, the hardware processor is configured to implement a
second request handler module,

the second request handler module being associated with

the guest virtual machine, the second request handler
module configured to receive from the program a request
to access a persistent storage associated with the guest
virtual machine, the second request handler module con-
figured to allow the program to access the persistent
storage in response to a user authenticating the request to
access the persistent storage.

36. The apparatus of claim 32, wherein the program is a
first program,

the request handler module configured to receive a request

to execute a second program on the host operating sys-
tem,

the request handler module configured to determine, in

response to the request to execute the second program,
that the second program has permission to execute on the
host operating system and outside a virtual machine.

Jul. 30, 2015

37. The apparatus of claim 32, wherein the virtual machine
manager is configured to initiate the guest virtual machine in
response to selecting the guest virtual machine.

38. The apparatus of claim 32, wherein the request handler
module is configured to determine that the program does not
have permission to execute on the host operating system and
outside a virtual machine based on a whitelist associated with
the host operating system not including an identifier associ-
ated with the program.

39. An apparatus, comprising:

a host request handler module implemented in at least one
of a memory or a processor, the host request handler
module configured to receive a request to execute a
program on a host operating system, the host request
handler module configured to determine, in response to
receiving the request, that the program does not have
permission to execute on the host operating system and
outside a virtual machine; and

a guest request handler module implemented in a guest
virtual machine, the host request handler module con-
figured to send the request to the guest request handler
module,

the guest request handler module configured to send a
signal to a guest operating system within the guest vir-
tual machine to initiate execution of the program on the
guest virtual machine if a guest program permissions list
indicates that the program has permission to execute on
the guest virtual machine,

the guest request handler module configured to send a
signal to the guest operating system to deny execution of
the program on the guest virtual machine if the guest
program permissions list indicates that the program does
not have permission to execute on the guest virtual
machine.

40. The apparatus of claim 39, further comprising:

a virtual machine manager operatively coupled to the host
request handler module, the virtual machine manager
configured to select the guest virtual machine for the
program based on a program type associated with the
program prior to the host request handler module send-
ing the request to the guest request handler module.

41. The apparatus of claim 39, wherein the program is a
first program,

the host request handler module configured to send a
request to execute a second program to the guest request
handler module, the guest request handler module con-
figured to send a signal to the guest operating system to
initiate execution of the second program such that the
guest virtual machine executes both the second program
and the first program during a time period.

42. The apparatus of claim 39, wherein the program is a

first program,

the host request handler module configured to receive a
request to execute a second program on the host operat-
ing system,

the host request handler module configured to determine,
in response to the request to execute the second program,
that the second program has permission to execute on the
host operating system and outside a virtual machine.

43. The apparatus of claim 39, wherein the host request
handler module is configured to determine that the program
does not have permission to execute on the host operating
system and outside a virtual machine based on a whitelist

US 2015/0212842 Al Jul. 30, 2015
10

associated with the host operating system not including an
identifier associated with the program.
44. The apparatus of claim 39, further comprising:
a virtual machine monitor configured to host the guest
virtual machine on the processor.

#* #* #* #* #*

