a2 United States Patent

US007720250B2

(10) Patent No.: US 7,720,250 B2

Jajodia et al. (45) Date of Patent: May 18, 2010
(54) METHOD AND APPARATUS FOR (58) Field of Classification Search 382/100,
WATERMARKING STREAM DATA 382/232, 240; 380/51, 54, 210, 252, 255,
380/287; 713/176, 179, 370/522-529; 283/72,
(75) Inventors: Sushil Jajodia, Oakton, VA (US); 283/74-81, 85, 93, 113, 901, 902; 375/130;
Huiping Guo, Monterey Park, CA (US); L 72509, 20, 22
YingJiu Li, Singapore (SG) See application file for complete search history.
. . . . (56) References Cited
(73) Assignee: George Mason University, Fairfax, VA
U.S. PATENT DOCUMENTS
6,785,815 B1* 8/2004 Serret-Avilaetal. 713/176
(*) Notice: Subject to any disclaimer, the term of this 7,020,304 B2* 3/2006 Alattar et al. 382/100
patent is extended or adjusted under 35 7,065,226 B1* 6/2006 Anzaietal. 382/100
U.S.C. 154(b) by 962 days. 7,313,248 B2* 12/2007 Tonisson 382/100
* cited by examiner
(21) Appl. No.: 11/419,800 .
Primary Examiner—Abolfazl Tabatabai
(22) Filed: May 23, 2006 (74) Attorney, Agent, or Firm—David G. Grossman
(65) Prior Publication Data &7 ABSTRACT
A watermarking system embeds a watermark into data values
US 2006/0277410 Al Dec. 7, 2006 that may be streamed. A data hash is calculated using data
Related U.S. Application Data values and a hash key. The data values are grouped. The
groups include a first group and a second group. A first group
(60) Provisional application No. 60/683,341, filed on May hash is calculated using data values in the first group and a
23, 2005. first group hash key. A second group hash is calculated using
data values in the second group and a second group hash key.
(51) Int.ClL A watermark is constructed based on the first group hash and
GO6K 9/00 (2006.01) the second group hash. The value of at least one of the data
HO4L 9/32 (2006.01) values in the first group is modified using the watermark.
HO04K 1/00 (2006.01)
(52) US.CL ...evvenee 382/100; 713/176; 380/255 20 Claims, 17 Drawing Sheets

187
Group data values
* 189
Calculate data hash value
* 191

- Calculate first group hash value

Y 193

Calculate second group hash value

* 195
Construct watermark
* 197
Extract watermark
+ 199

Compare watermarks

* 201

Authenticate groups

Groups
remaining?

U.S. Patent

101
/

Processing
point

May 18, 2010

Sheet 1 of 17

FIG. 1

103

US 7,720,250 B2

105
/

Watermark
authentication
point

U.S. Patent May 18, 2010 Sheet 2 of 17 US 7,720,250 B2

/107 /111

buffer — hash

115
/[

data —» watermark p———p
/109 / 113

buffer ———» hash

FIG. 2

U.S. Patent May 18, 2010 Sheet 3 of 17 US 7,720,250 B2

/ 127
watermark
/ 117 / 121 /129
buffer —p hash authenticate —p
/125
Watermarked
data watermark
/ 119 / 123
buffer - hash

FIG. 3

U.S. Patent May 18, 2010 Sheet 4 of 17 US 7,720,250 B2

131

Check for synchronization point

* 133

Group data values

* 135

—Pp Calculate first group hash value

* 137

Calcualate second group hash value

* 139

Construct watermark

* 141

Modify value

Group
remaining?

FIG. 4

U.S. Patent May 18, 2010 Sheet 5 of 17 US 7,720,250 B2

Algorithm 1 Watermark embedding
. clear buft(Q), buff(1)
g — U
AHBuli(bull(7)) //See algorithin 2
H;, = getGoupHash(buff(jn)): //See algorithm 3
while true do
61 Jy={jo+ 1) mod?2
AUBuff(haf f{7)
8 H,, = getGoupHash(buft(j,)./
9 WatermarkEmbed(buff{j,}, H,,, H;,) #/See algorithm 4
10: Send data mn bulf(7y)
11: Clear buff(jy)
1220 Jo—
13: end while

preri

o Juw W bO

]

FIG. 5

U.S. Patent May 18, 2010 Sheet 6 of 17 US 7,720,250 B2

From check for
synchronization
point

147
Data return
Incoming?
Buffer Data
¢ 151
Increment Counter
153 Jes 155
return
no

FIG. 6

U.S. Patent May 18, 2010 Sheet 7 of 17 US 7,720,250 B2

Algorithm 2 filiBuffer(butf()))
1h k0
2: while receive an mconung data s; do
3: buff(j}{k + +) = s, // buffer s,

if (5 18 a synchronization point) and (4 > L) then

A e

return
G end if
- end while

]

FIG. 7

U.S. Patent May 18, 2010 Sheet 8 of 17 US 7,720,250 B2
From calculate first
or second hash
value
159
Data
Hash gro
in buffer? group
Yy 163
Hash data return

FIG. 8

U.S. Patent May 18, 2010 Sheet 9 of 17 US 7,720,250 B2

Algorithm 3 getGoupHash{buff(7). /)
11k« number of data in buff()
2: for ecach data 5, in butf{ ;) deo
3 = HASHIK, ;) /fthe last bit of s, is ignored
4. end for
50 H =HASHK by ba, -+ Dy
O

v, return H

FIG. 9

U.S. Patent May 18, 2010 Sheet 10 of 17 US 7,720,250 B2

From embed
watermark

‘v 165

Determine buffer
size

lv 167

Extract bits/set
counter

169

171
Counter yes
equal to buffer return
size?

173

Embed watermark

lv 175

Increment Counter

FIG. 10

U.S. Patent May 18, 2010 Sheet 11 of 17 US 7,720,250 B2

Algorithm 4 watermarkEmbed(buff(j,). H,,. H;,)
i: WH = HASH{K, H;,. H;,)
k. — number of dam 11 buﬁ (70)
W = extractBits(WH. k) //See algorithm 3
for: =1tok do
last bit of buff(jy)(z) — w(z)
6. end for

|

LA o L

FIG. 11

U.S. Patent May 18, 2010 Sheet 12 of 17 US 7,720,250 B2

179

Watermark
length >= number of
data in
group?

Set watermark value

181

return

Set new variable

l 185

Set watermark value

FIG. 12

U.S. Patent May 18, 2010 Sheet 13 of 17 US 7,720,250 B2

Algorithm 5 extractBits(W H, &)
1 if lengthtW'H) > k then
2 W = concatenation of first k selected bits from WH
3: else
4: m=k- length(WH)
5: W = concatenation of WH and extractBits(WH. m)
6: end if
;o return W

...s__]

FIG. 13

U.S. Patent May 18, 2010 Sheet 14 of 17 US 7,720,250 B2

187

Group data values

* 189

Calculate data hash value

Y 191

—p] Calculate first group hash value

* 193

Calculate second group hash value

* 195

Construct watermark

* 197

Extract watermark

* 199

Compare watermarks

* 201

Authenticate groups

yes Groups

remaining?

FIG. 14

U.S. Patent May 18, 2010 Sheet 15 of 17 US 7,720,250 B2

Algorithm 6 Watermark verification
1 clear butf(0), buiff(l)
Cge U

(o)

sopb Vg — false
AllBuff(buft(),) /fSee algorithny 2
H,, = getGoupHashibuff(7). A): /{See algorithm 3
0: while true do
g = o+ 1) mod 2
8 fillBuff(buff({ 5))
9 H;, = getGoupHashibuff(y; }.A);
10: WatermarkVerify(buff(7, 1. ;.. H,,. pVo. Vi) //See algorithm 7
i1 Clear buff(y))
120 = n
130 ply — pV)
14 Yy 1
15: end while

[RV

-~

FIG. 15

U.S. Patent May 18, 2010 Sheet 16 of 17 US 7,720,250 B2

205

Get buffer length

i 207

Set bits / set counter

21

C ¢ 213
ounter Watermark yes
equal to verified? return
Length?]
. 217 219
Extract watermark Previous yes
watermark return
verified?

l 221

Increment Counter

return

FIG. 16

U.S. Patent May 18, 2010 Sheet 17 of 17 US 7,720,250 B2

Watermark detection rationale

Previous Group | Current Group || Note:

Predicates Cases || plyg I3 pVy i Othier possible cases
Watermark 1 frue friee e Fruc
Mateh 2 Jfalse falze rue e One or more eatire groups between pre-
vious group and the current group niny be
missing
(¥ = rrue) 3 false trie e frne One or more entire groups hetween previ-
ous group and the current group are miss-
ing
Watermark 4 e rue false true
Mismatch 3 Jalse e faize false Talse positive may happen for the current
group in case of group missing
(p¥y = julse} 0 Jalse fulse | fulse Julse False posttive nay happen for the current

SrOUP OF STOuY NHSHIE

Table 1

Watermark verification result and the watermark detection

Tanpering occwrs | Verification result{V) | Watermark detection | Notes

Yes False Succeeds Successfully detects the tamper-
ing
Yes True Fails Fails to detect the tamper-

ingtFalse negative}

No False Fails Mistakenly detects tampering in
case of o tampering{False posi-
tive}

No True Succeeds Successfully passes the verifica-

tion i ease of no tampering

Table 2

FIG. 17

US 7,720,250 B2

1

METHOD AND APPARATUS FOR
WATERMARKING STREAM DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/683,341, filed May 23, 2005, which is
hereby incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a watermarking system according to one
aspect of the illustrative embodiments.

FIG. 2 shows a system for buffering, hashing and water-
marking data according to one aspect of the illustrative
embodiments.

FIG. 3 shows a further system for buffering, hashing and
watermarking data according to one aspect of the illustrative
embodiments.

FIG. 4 shows a flow of a watermark encryption program
according to one aspect of the illustrative embodiments.

FIG. 5 shows a flow of a watermark decryption program
according to one aspect of the illustrative embodiments.

FIG. 6 shows a flow ofa data grouping and synchronization
point detection routine according to one aspect of the illus-
trative embodiments.

FIG. 7 shows a flow of a data and group hashing routine
according to one aspect of the illustrative embodiments.

FIG. 8 shows a flow of a watermark embedding routine
according to one aspect of the illustrative embodiments.

FIG. 9 shows a flow of a watermark adjusting routine
according to one aspect of the illustrative embodiments.

FIG. 10 shows a flow of a watermark extraction and com-
parison routine according to one aspect of the illustrative
embodiments.

FIG. 11 shows a system of watermark embedding accord-
ing to one aspect of the illustrative embodiments.

FIG. 12 shows a system of watermark verification accord-
ing to one aspect of the illustrative embodiments.

FIG. 13 shows a watermark embedding algorithm accord-
ing to one aspect of the illustrative embodiments.

FIG. 14 shows a buffer filling algorithm according to one
aspect of the illustrative embodiments.

FIG. 15 shows a group hashing algorithm, a watermark
embedding algorithm, and a bit extraction algorithm accord-
ing to one aspect of the illustrative embodiments.

FIG. 16 shows a watermark verification algorithm accord-
ing to one aspect of the illustrative embodiments.

FIG. 17 shows sample test data for false positives accord-
ing to one aspect of the illustrative embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

The illustrative embodiments described below relate to the
watermarking of data streams to detect anomalies and/or
tampering.

FIG. 1 shows a further system of one aspect of the illustra-
tive embodiments. A data stream can be watermarked at a
processing point 101. The data stream can then be sent out
over a network, the Internet, or other transmission means 103.
The watermarked data stream can then be received and
authenticated at a watermark authentication point 105.

FIG. 2 shows a system of one aspect of the illustrative
embodiments. Data coming in from a data stream can be
processed by the sender of the watermarked data. Buffers
107, 109 can be used to buffer incoming data until groups of

10

20

25

40

45

60

65

2

appropriate sizes are reached. Once buffers 107, 109 are full,
the system can produces hashes 111, 113 for the respective
buffers. The system may then use those hashed values to
produce a watermark 115. In this aspect, the scheme can be
group based, and both the sender and the receiver can have
two small buffers which are used to store two groups of data.
Further, according to this aspect, the data elements can be
received in the order that they are sent. Each data element in
the stream can be treated independently in this scheme.

FIG. 3 shows a system of one aspect of the illustrative
embodiments. Watermarked incoming data can be processed
by the receiver of the watermarked data. Buffers 117,119 can
be used to buffer incoming data until groups of appropriate
sizes are reached. Once buffers 117, 119 are full, the system
can produces hashes 121, 123 for the respective buffers. The
system may then use those hashed values to produce a water-
mark 125 for comparison purposes. The system may also
extract an embedded watermark 127 from one of the groups
of data 121. Then, to verify the authenticity of the data, the
system may authenticate the data at 129 by comparing the
extracted watermark 127 with the created watermark 125. In
this aspect, the scheme may be group based, and both the
sender and the receiver can have two buffers for storing
groups of data. Further, according to this aspect, the data
elements may be received in the order that they are sent. Each
data element in the stream may be treated independently in
this scheme.

According to one aspect of the illustrative embodiments, a
data stream which consists of numerical data elements that
can tolerate small distortions introduced by watermark
embedding may be processed. FIG. 4 shows flow of one
example of a watermark embedding scheme.

For simplicity, a data stream S is a sequence of data ele-
ments denoted as {s,, s,, . . ., 8;}, where s, is an item which is
generated by a data source. Depending on applications, each
data element could be a numerical or categorical value, a
high-dimensional vector or tuple, a multiple-dimensional
array, a data file, or other suitable data element. HASH is a
cryptographic hash function such as MD5 or SHA, which
takes a message of arbitrary length and secret key K, and
produces an output of fixed length. For each item s,, h;, is its
corresponding keyed hash value. A number of data elements
are grouped together, where H,, denotes the keyed group hash
value of the current group and H;, is the group hash of the next
group. The number of data elements in a group is denoted as
k, which may vary for different groups. The group size may be
lower-bounded by L and upper bounded by m. The secure
parameters m and [. govern how the data elements are
grouped. W is a watermark that is embedded in a group. The
preliminary watermark verification results of the previous
group and current group may be denoted as pV, and pV,,
while the final results are denoted as V, and V|, respectively.

A watermark embedding algorithm corresponding to one
aspect of the illustrative embodiments is shown in algorithm
1 of FIG. 5 corresponding to FIG. 4. It mainly consists of two
parts: grouping and embedding. First, a data element may be
checked at 131 to see if it is a synchronization point. A data
element s, is a synchronization point if h, mod m=0. Through-
out the algorithm, according to this aspect, the program may
ignore the last bit of each data element when computing its
secure hash value, since the last bit will be replaced with a
watermark bit. The program may group the data elements at
133 if a synchronization point has not yet been reached. If the
synchronization point has been found at 131, the data element
may still be grouped at 133, and then the program may pro-
ceed to calculate a group hash at 135.

US 7,720,250 B2

3

Because whether a data is a synchronization point or not
may be governed by K and m. According to this aspect, it may
be difficult for one to figure it out without the two secret keys.
Of course more than two keys may be used. The program may
proceed to the embedding process at 135, 137, 139, 141 if s,
is a synchronization point and the number of elements is
larger than L, the lower-bound of the group size; otherwise,
the data may be buffered. The group size may be lower
bounded for security reasons. The group size greatly affects
the security of the scheme. L may be set to prevent small
groups.

As shown in FIG. 4, a group hash value may first be
computed at 135 as the hash of the concatenation of all indi-
vidual hash values of data elements in the group. A second
hash value may be calculated at 137 based on a second group
as well. Then a watermark may be constructed at 139 based on
both the current group hash value and the group hash value of
the next group. The length of the watermark may be the same
as the number of data in the group. The watermark may be
embedded at 141 by replacing the least significant bits of all
data elements with the watermark bits. In this way, the
embedded watermarks can actually be chained so that even if
the whole group is deleted, the deletion is still detectable.
After the completion of the watermark embedding, the pro-
gram may check at 143 to see if any groups are remaining. For
a finite data stream, an ending vector may be agreed on in
advance to indicate the end of a data stream. In this case, to
make sure the last group is long enough, the program may
need to pad the last group with the ending vector or some
other data.

According to this aspect, the watermark embedder can
employ two buffers as shown in FIG. 2: buff(j,) 107 may be
used for the current group, while buff(j,) 109 may be used for
the next group. All data between two synchronization points
(if the group size is larger than L), including the last synchro-
nization point, can form a group. The watermark embedding
may be group based. FIG. 6 shows a flow of a data grouping
and synchronization point detection routine according to one
aspect of the illustrative embodiments. The algorithm 2 cor-
responding to this flow is shown in FIG. 7.

The program can check at 145 to see if data is incoming. If
no more data is incoming, the program can return at 147 to the
main program and a group of a smaller size than the standard
size can be hashed and watermarked. If data continues to be
present, the program can buffer the data at 149 and increment
a counter at 151. After buffering each data set, the program
can check to see if a synchronization point has been reached
at 153. If the point is reached, the program can return at 155
to the main program and hash and watermark the data. Else,
the program can continue to check at 145 for additional data
to add to the group.

According to this aspect of the illustrative embodiments,
the data in a group may be hashed once the group is full. A
flow of' this process according to one aspect is shown in FIG.
8. Algorithm 3 corresponding to FIG. 8 is shown in FIG. 9.
The program may check at 157 to see if unhashed data
remains in the buffer. If unhashed data remains, the program
may hash a data element at 161 and then check to see if that
was the last element at 157. Once no unhashed data remains,
the program may hash at 159 the hashed data values as a
whole to obtain a group hash, and may return at 163 the group
hash to the main routine.

According to another aspect of the illustrative embodi-
ments, a flow of which is shown in FIG. 10, a watermark may
be embedded in the trailing bit(s) of data elements in a group.
The Algorithm 4 corresponding to FIG. 10 is shown in FIG.
11. The program may determine at 165 the size of the group

20

25

30

40

45

60

65

4

buffer. The program may then extract the appropriate number
of'bits of the watermark and set a counter at 167. The program
can check to see if the counter has reached the buffer size at
169. If the counter has reached the buffer size, the program
may return at 171. One bit of the extracted watermark bits can
be embedded at 173 in the place of the trailing bits in each
datum, and the counter can be incremented. Once the counter
reaches the buffer size at 169, then the whole watermark has
been embedded and the program can return at 171.

FIG. 12 shows a flow of a watermark adjusting routine
according to one aspect of the illustrative embodiments, cor-
responding to Algorithm 5 shown in FIG. 13. The program
may first determine at 177 whether or not the watermark size
is greater than a size of the extracted bits. If the watermark is
less in size than the extracted bit size, then the program may
not be able to replace the extracted last bit of each data
element with the watermark on a 1-to-1 correspondence.
Additional length may need to be added to the watermark to
allow replacement of all the bits. If the watermark size is
greater than or equal to the size of the extracted bits, then the
program may fix the watermark value at 179. In one aspect
this may be done by leaving the value fixed if the watermark
size is equal to the extracted bit size, and in selecting the first
number of bits equal to the size of the extracted bits if the
watermark size is greater than the extracted bit size. If the
watermark is too small, then the program may set a new
variable at 183, determined by subtracting the size of the
watermark from the previous size of the number of extracted
bits. The new variable may then be used to determine a “filler”
for the missing number of watermark bits by recursively
calling this the function described by this aspect. The returned
value may be concatenated at 185 with the old, too small
watermark to obtain a watermark of desired size. Once the
program has determined the appropriate watermark, the pro-
gram may return at 181.

According to a further aspect of the illustrative embodi-
ments, to verify the integrity of the incoming data stream, two
buffers can be used. One flow of a verification program
according to one aspect is shown in FIG. 14, corresponding to
Algorithm 6 shown in FIG. 15. The program can use the
embedding key K, the secret parameter m, and the lower
bound L. If a plurality of secret keys is used, then the decoding
program may use all of the keys. As in the watermark embed-
ding, a synchronization point may be used to group some data
elements into a current group.

The program may group incoming values at 187 until a
synchronization point is reached. The program may then cal-
culate at 189 a data hash for each data value in the group.
Alternatively, the program may calculate the data hash for
each value as it comes in, and then add the value to the group.
Other suitable method(s) of grouping and calculation may
also be used.

To verify the integrity of the group, the program may wait
until a second group is formed. As illustrated, the program
calculates at 191, 193 the hash values of a first and a second
group. A watermark can be constructed at 195 from the group
hash value of the current group and the second group. A
watermark may also be extracted at 197 from the grouped
data. The constructed watermark can be checked at 199
against the extracted watermark in the current group. If the
two watermarks match, both preliminary and final verifica-
tion are true, the current group can be authenticated at 201 and
the watermark detection is successful. The program may then
check at 203 to see if additional groups need verification.
However, if there is a mismatch, only the preliminary verifi-
cation (pV,) is false. Since the embedded watermarks can be
chained across groups, the program can investigate the integ-

US 7,720,250 B2

S

rity of the previous group used for authenticity before ascer-
taining the final verification result of the current group (back-
ward check). If both the final and the preliminary verification
results of the previous group (pV, and V,)) are true, the final
verification (V) is also true, which contradicts the prelimi-
nary result pV,. Due to the chaining, the false preliminary
result may come from the modifications in either the current
group or the next group. If it is from the current group, the
preliminary verification of the previous group will definitely
be false. Thus, the verification of the previous group pV,=true
proves that the second group causes the preliminary verifica-
tion of the current group to be false and the final verification
of the current group (V) should be set to true. If either the
preliminary or verification of the previous group is false, the
final verification can be set to be false.

According to a further aspect of the illustrative embodi-
ments, a flow of which is shown in FIG. 16, a program which
has received a stream of data may perform a watermark veri-
fication test. The program may determine at 205 the buffer
length and set at 209 the appropriate number of bits from a
watermark calculated by the receiving program. This process
may resemble the watermark size fixing process described in
FIG. 12. By adjusting a calculated watermark, the program
may ensure that the watermark is the same size as a water-
mark that is to be extracted from the incoming data. The result
of this determination is the watermark that can be used for
comparison. The program then can proceed to extract at 215
the trailing bits from the grouped datum, and increment a
counter at 221 until the counter is equal at 209 to the group
length, indicating that the full watermark has been extracted.
The program can then compare at 211 a concatenation of the
extracted bits to the comparison watermark and determine if
the watermark has been verified. If the watermark is valid, the
program can return at 213 a positive. If the watermark is not
valid, the program can check at 217 the validity of the previ-
ously checked watermark. If the previous watermark was
valid, then the error likely lies in the second group of data
used to generate the comparison watermark and the program
returns at 219 a positive for this group. Else, if the previous
group was invalid, then the program can return at 223 an
indication that there is an error between this group and the
previous group.

A summary of watermark detection is given in tables 1 and
2 shown in FIG. 17.

A false positive occurs when a group is authentic while its
final verification result is false. According to this aspect, this
may happen if preliminary verification of both the previous
group (pV,) and the current group (pV,) are false. In this case,
the algorithm asserts false for the final verification of the
current group (i.e., V,=false), which may result in a false
positive. In one sub-case (case 5 in table 1), the final verifi-
cation result of the previous group is true. If no groups
between the previous group and the current groups are miss-
ing, the verification result of the current group is definitely
true. However, in case of group missing, it is possible that the
current group is indeed authentic while an incorrect assertion
is made based on the fake previous group.

In the other sub-case (case 6 in table 1), it is still possible
that a wrong decision may be made due to group missing. In
case of no group missing, a false positive occurs only when an
unmodified group is adjacent to two modified groups.

Though there are possible false positives, they do not
always happen. On one hand, since grouping is secure, it is
not likely that an attacker happens to delete some entire
groups. This greatly reduces possible false positives. On the
other hand, if there is more than one unmodified group
between two modified groups, there will be few false posi-

15

20

25

40

45

60

65

6

tives, but this only happens when massive modifications are
made. Since the scheme is designed to detect modification, it
is more critical to keep the number of false negatives low.

The average length of groups, denoted by 1, is a parameter
that can affect not only the security of the scheme, but also the
localization precision in tamper detection (see section 4). For
aparticular data stream, 11 is a function of the lower bound L
and the parameter m. The program first can compute th for
data streams (e.g., stock market data) in which the data ele-
ments have random hash values.

Let x,=h, mod m, where h, is the secure hash of the i-th
element in a group. Since all data elements have random hash
values, X, can be considered as a random variable which takes
any value from {0, . . ., m-1} with probability 1/m. The
probability that a group has length k=L is:

= Plk]
=P =0,x-1#0, ..., #0,x,1 =%, ... ,% =4]
1 1 k—L
-}
m m
where x can be any of the values in {0, . . ., m~1}. Therefore,

the average length of groups is:

Plk]-k
k=L
1 Iyl 1yt
Y ST
m m m
=L
=L+m-1

Since the probability that a group has length k (i.e., P[k])
decreases exponentially with k, it is unlikely that some groups
grow too long. To verify this, one may choose to use an upper
bound U(U>L) for group length in watermark insertion and
detection. In such case, the probability that a group has length
kis:

U-L
:LHm_U.[l_(l_%]]

According to this aspect, the scheme can be designed to
detect modifications made to a data stream which consists of

US 7,720,250 B2

7

a series of numerical data. The watermark can be embedded
by introducing small distortions to the data. Since numerical
data usually accept small errors, the embedded watermark
should not affect the usefulness of the data stream. If a data
stream consists of categorical data such as strings and date/
time, the scheme is more difficult to apply directly, but the
watermark embedding and detection methods can be adjusted
to make them applicable to categorical data. For example, if a
data stream contains a series of strings, the program can
simply embed a watermark bit “1” to a string by inserting a
space before it and embed a bit “0”” without doing anything. In
this way, the watermark is embedded without introducing any
distortions to the data (this method can also be applied to
numerical data). The receiver can be space sensitive to extract
the embedded watermark and verify the integrity of the data
stream.

The scheme can also be easily extended to other types of
data elements, such as high-dimensional vectors or tuples,
multiple-dimensional arrays, or generic data files. The only
difference is that a single value (either numerical or categori-
cal) can be chosen from each data element for embedding a
watermark bit. Such selection can be determined by the
secure hash of the data element. For example, if the data
element is a tuple with v non-primary key attributes, one can
choose the k-th attribute to embed a watermark bit if k=h mod
v, where h is the secure hash of the tuple.

Any modifications made to a data stream can be detected
and located. The proposed scheme can be group based and
any modifications can be narrowed down to a group. Also, the
failure of verification of one group may only affect the water-
mark verification of up to two other groups and may not
propagate to additional groups. An example follows ofhow to
verify the integrity of a group in the average case where a
single data element is changed among th elements.

Assume an attacker inserts a fake data element to the
stream. This example shows how to detect the modification to
defeat the intention of the attacker who wants to make the
insertion undetectable. Since synchronization points may
play a role in grouping, the program may consider whether
the inserted data is a synchronization point.

First, suppose that itis nota synchronization point, and that
the insertion occurs in the current group. In this case, the
watermark extracted from the group hash will not match the
embedded watermark with a high probability, so the verifica-
tion of the current group will fail. Since the embedded water-
marks are chained across groups, though the previous group
is authentic, the preliminary verification of that group will
still fail. This can be corrected through backward checking.
That is, the successful verification of the group before the
previous group will make the verification of the previous
group succeed.

The probability that the inserted value is not a synchroni-
zation point is 1-1/m. After insertion, the preliminary verifi-
cation of the current group will succeed (i.e., false negative)
with probability 1/2™*'. Second, if the inserted element is a
synchronization point, which will happen with probability
1/m, it has equal probability 1/(fa+1) to be inserted into any
position. If the synchronization point is inserted into one of
the first L-1 positions, then one of the divided groups con-
tains less than [L elements; thus, the two groups will be com-
bined into a single group which contains m+1 elements due to
the lower bound restriction on group size. If the synchroni-
zation point is inserted into the other positions, the current
group is split into two groups (if the synchronization point is
inserted into one of the last L positions, the second divided
group will combine with the next group), each of which has at
least L elements. Then the probability that either group suc-

20

25

40

45

60

65

8

ceeds in preliminary verification is at most 1/2-~!. The total
false negative in this case is thus:

b (1 1] 1 I(L—l 1
<[1-2]. Z .
prov = m) et T lm el e

The modified value has probability 1/m to become a syn-
chronization point, and probability 1-1/m to be a non-syn-
chronization point. The difference is that if the last element is
modified, it may become a synchronization point, which
means the group does not change, or non-synchronization
point, which means the current group is combined with the
next group. In either case, the probability that the group
succeeds in preliminary verification is at most 1/2™. The total
false negative is thus:

Bl
om g 241

b<(1 1] 1+1(L—1 1+r71—L+1 1] 1 11
Al U TR G R TR &

If one data element is deleted from the current group, it has
probability (th-1)/fh not to be the last point, and probability 1/
1 to be the last point, which is synchronization point. In the
first case, the preliminary verification of the current group
will succeed (i.e., false negative) with probability at most
1/2"'. Inthe second case, the false negative is at most 1/2™ as
the current group is merged with the next group. Therefore,
the total false negative is:

m-1 1 1

1 1

)

) 1 1
o < 11 1
P o o

21

The exact false-negative rate may be difficult to obtain as it
can depend on how those changed elements distribute in all
affected groups and whether they are synchronization points.
Fortunately, the worst case scenario can be easily analyzed.
Due to the use of lower bound restriction on group length, no
matter how data elements are changed, each modified group
(or affected group) can have a length of at least .. With length
fixed, the false negative of any affected group remains the
same no matter how many elements in the group are changed.
Therefore, in the case of an attack at group level, and assum-
ing that g groups are affected in attacks, in the worst case, the
preliminary verification of any affected group succeeds (i.e.,
false negative) is 1/2~. The overall false negative, which is the
probability that at least one affected group is verified, can be
computed by:

prob=1-(1-1/2%%¥

The false negative is monotonic increasing with g. If g is
large enough, the false negative will be greater than a toler-
able threshold t(t>0). T is the false negative threshold. Let g
the maximum g such that prob=r; thus,

log(l —7)

&= log1—1/20)"

If the number of affected groups is greater than g, then the
false negative rate is considered intolerable. Given T, itis easy
to know that g is monotonic increasing with L.

US 7,720,250 B2

9

A special case of deletion is the deletion of a whole group.
Since data elements are grouped based on a key, without the
key it is difficult for an attacker to determine the data elements
that belong to a group. It is not likely that an attacker happens
to delete the whole group. However, even if this happens, the
scheme can still detect it since the preliminary verification of
its previous group can fail with high probability. If the previ-
ous group contains M elements, the probability for detecting
the deletion of the current group is 1-1/2™"*, which is higher
than probability 1-1/2% for detecting a modified group.

Choosing parameters [. and m may also be considered to
make trade-offs between security and localization precision
in watermark detection. The security is measured by the false
negative, the number of affected groups that can be tolerated,
and the propagation of affected groups. The localization pre-
cision is indicated by the average length of groups.

According to the previous example, the greater the L, the
smaller the upper bound of false-negative rate, and the greater
the g, which is the lowest upper bound for the number of
affected groups that can be tolerated in watermark detection.
This is the bright side of incrementing .. On the other side,
the average length m of groups increases linearly with L, thus
degrading the localization precision in watermark detection.

Note that m also affects the average length f in a linear
manner. Since m does not affect the upper bound of a false
negative, it seems that the smaller the m, the better, as the
localization precision is higher. A minor negative effect is that
given N data elements, the total number of groups §=N/m is
larger, thus decreasing the detection rate min(g, §)/g (note
that the number g of affected groups that can be tolerated in
watermark detection does not change with m).

If one chooses m=1, then every element is a synchroniza-
tion point, and each group has fixed length L. In such a case,
if an attacker deletes a single data element from the stream, all
the groups that follow the group from which the element is
deleted are aftected. This may produce a large number of false
negatives. M may be setto 1, however, if that is the best choice
for the application of the scheme.

In the proposed scheme, if pre-verification of the current
watermark fails, a backward check can be conducted to see
whether the failure is caused by neighboring groups. This
may result in false positives. If the data stream can tolerate a
few more modifications, say modification of two least signifi-
cant bits, two watermarks can be embedded in a group. The
chained watermark W, is embedded in the same way as is
described in the algorithm. The other watermark W, is con-
structed for the current group hash and is embedded to the
next significant bits of data in the group. In this way, W, can
be used to verify the integrity of the current group directly,
while W, can be used to detect deletion of entire groups. In
this way, false positives can be eliminated.

Another approach to mitigating a replay attack can be to
accept a group only if it contains a timestamp that, in the
receiver’s judgment, is close enough to its knowledge of
current time. Like sequence number, the timestamp can be
used in watermark computation and can be inserted into the
group pseudo-randomly to hide the position of synchroniza-
tion points. This timestamp approach may require that the
clocks between the sender and receiver be synchronized (at
least loosely). The inherent difficulty of this approach is that
some sort of synchronization may have to be maintained
between the clocks of the sender and the receiver. Such syn-
chronization may have to be robust against both network
errors and malicious attacks. If there is a temporal loss of
synchronization, the opportunity for a successful attack will
arise. Due to the variable and unpredictable nature of network
delays, precise synchronization may sometimes be difficult to

20

25

40

45

60

65

10

maintain. Therefore, the timestamp approach may have to
allow a window of time that is sufficiently large to accommo-
date network delays yet sufficiently small to minimize the
opportunity for a replay attack.

In many applications, the data element itself contains a
unique ID (e.g., primary key to database tuple) or time infor-
mation (e.g., in stock market data and remote sensing data). In
such cases, present embodiments may be used directly to
thwart a replay attack as one can use the unique ID or times-
tamp to detect the replay attack.

Embodiments of the invention may be embodied as a series
of instructions on a tangible computer readable media. The
instructions when executed by one or more processors are
configured to perform a method for embedding a watermark
into data values that may be streamed. The method may
include calculating a data hash based on data values using a
hash key. Data values may be grouped the data values into
groups, the groups including a first group and a second group.
A first group hash may be calculated using data values in the
first group and a first group hash key. A second group hash
may be calculated using data values in the second group and
asecond group hash key. A watermark based on the first group
hash and the second group hash may be constructed. The
value of at least one of the data values in the first group may
be modified using the watermark.

Depending upon aspects of the embodiments, the various
keys may be the same or different. Similarly, one or all of the
keys may be secret.

The modifying may further include modifying the least
significant bit of at least one of the data values. An extension
of this may include modifying a plurality of least significant
bits of at least one of the data values. The grouping may
include: buffering a plurality of data values; and grouping the
buffered values as a group of a size designated by a size key.
The size key may be kept as a secret.

Once the data is grouped, the remaining steps may be
repeated until all of the groups have been processed. The
repeating may include checking for a final group. Once a final
group is detected: that final group may be processed slightly
differently from the rest of the groups. The processing may
include: calculating a final first group hash for the final group;
constructing a final watermark using the final first group hash;
and modifying the value of at least one of the data values in the
final group using the final watermark.

Additionally, embodiments may include verifying the just
described watermark. A method for verifying a watermark
may include receiving an incoming stream of data values. The
data values may be grouped into groups. The groups should
include a first group and a second group. A first group hash
may be calculated using data values in the first group and a
first group hash key. A second group hash may be calculated
using data values in the second group and a second group hash
key. A constructed watermark may be generated using the first
group hash and the second group hash. An embedded water-
mark may be extracted from the first group. A comparison
may then be made between the extracted watermark and the
constructed watermark. The first group may then be authen-
ticated using the results of the comparison.

It may be useful to buffer the received data values and to
then group the buffered data values as a group of a size
designated by a size key. Like before, several of the steps may
be repeated until no more groups remain. A check may be
made for a final group. One a final group is detected, a series
of steps slightly different from before may be performed
including: calculating a final first group hash for the final
group; generating a final constructed watermark using the
final first group hash; extracting a final embedded watermark

US 7,720,250 B2

11

from the final group; comparing the final extracted watermark
to the final constructed watermark; and authenticating the
final group based on the results of the comparison.

Some embodiments of the present invention may be
embodied a modules. Modules may be implemented in soft-
ware or hardware. For example, to provide fast data process-
ing operations, some of the modules could be implemented in
FPGA or ASIC type devices. The modules may be logical or
discrete. For example, a logical module could include a sub
routine that performs a specific function or just a series of
instructions embedded in a larger program. In the case of
devices such as an FPGA or ASIC, the code utilized by the
designer of a device may look very similar to a software
module, even though the result includes the customized con-
nection of gates. Itis intended that the disclosed embodiments
and equivalents thereof will be implemented in new devices
that are capable of processing data, even if those devices are
not currently known to those skilled in the art today.

A series of modules to practice an embodiment of a data
watermarking system may include a data watermark inserter
and a data watermark verifier. The data watermark inserter
may include: a data hash calculator; a data grouper; a first
group hash calculator; a second group hash calculator; a
watermark constructor; and a data value modifier. The a data
hash calculator may be configured to calculate a data hash
based on data values using a hash key. The data grouper may
be configured to group the data values into groups, the groups
including a first group and a second group. The first group
hash calculator may be configured to calculate a first group
hash using data values in the first group and a first group hash
key. The second group hash calculator may be configured to
calculate a second group hashusing data values in the second
group and a second group hash key. The watermark construc-
tor may be configured to construct a watermark based on the
first group hash and the second group hash. The data value
modifier may be configured to generate modified data values
by modifying the value of at least one of the data values in the
first group using the watermark.

The data watermark verifier may include a data receiver; a
verification data grouper; a first verification group hash cal-
culator; a second verification group hash calculator; a verifi-
cation watermark generator; a verification embedded water-
mark extractor; a verification watermark comparator; and an
authenticator. The data receiver may be configured to receive
an incoming stream of the modified data values. The verifi-
cation data grouper may be configured to group the modified
data values into verification groups, the groups including a
first verification group and a second verification group. The
first verification group hash calculator may be configured to
calculate a first verification group hash using data values in
the first verification group and the first group hash key. The
second verification group hash calculator configured to cal-
culate a second verification group hash using data values in
the second verification group and the second group hash key.
The verification watermark generator may be configured to
generate a verification constructed watermark based on the
first verification group hash and the second verification group
hash. The verification embedded watermark extractor may be
configured to extract a verification embedded watermark
from the first verification group. The verification watermark
comparator may be configured to compare the verification
embedded watermark to the verification constructed water-
mark; and the authenticator may be configured to authenticate
the first verification group using results from the verification
watermark comparator.

While various aspects of the illustrative embodiments have
been described above, it should be understood that they have

20

25

40

45

60

12

been presented by way of example, and not limitation. It will
be apparent to persons skilled in the relevant art(s) that vari-
ous changes in form and detail can be made therein without
departing from the spirit and scope of the illustrative embodi-
ments. In fact, after reading the above description, it will be
apparent to one skilled in the relevant art(s) how to implement
the invention in alternative embodiments. Thus, the present
invention should not be limited by any of the above described
illustrative embodiments. In particular, it should be noted
that, for example purposes, the above explanation has
included examples of embodiments implemented as soft-
ware. However, those experienced in the art will realize that
multiple other embodiments, including, but not limited to
embedded code for processors embedded in hardware; soft-
ware for running on general purpose computers, and hard-
ware devices such as ASIC and FPGA devices, can be used.

In addition, it should be understood that any figures, screen
shots, tables, examples, etc. which highlight the functionality
and advantages of the illustrative embodiments, are presented
for example purposes only. The architecture of the illustrative
embodiments is sufficiently flexible and configurable, such
that it may be utilized in ways other than that shown. For
example, the steps listed in any flowchart may be re-ordered
or only optionally used in some aspects.

Further, the purpose of the Abstract of the Disclosure is to
enable the U.S. Patent and Trademark Office and the public
generally, and especially the scientists, engineers and practi-
tioners in the art who are not familiar with patent or legal
terms or phraseology, to determine quickly from a cursory
inspection the nature and essence of the technical disclosure
of the application. The Abstract of the Disclosure is not
intended to be limiting as to the scope of the present invention
in any way.

Furthermore, it is the applicant’s intent that only claims
that include the express language “means for” or “step for” be
interpreted under 35 U.S.C. 112, paragraph 6. Claims that do
not expressly include the phrase “means for” or “step for” are
not to be interpreted under 35 U.S.C. 112, paragraph 6.

What is claimed is:

1. A tangible computer readable media containing a series
of instructions that when executed by one or more processors
performs a method of embedding a watermark comprising:

a) calculating a data hash using data values and a hash key;

b) grouping the data values into groups, the groups includ-

ing a first group and a second group;

c¢) calculating a first group hash using data values in the first

group and a first group hash key;

d) calculating a second group hash using data values in the

second group and a second group hash key;

e) constructing a watermark using the first group hash and

the second group hash; and

f) modifying the value of at least one of the data values in

the first group using the watermark.

2. The method of claim 1, wherein the data values are
streamed.

3. The method of claim 1, wherein at least two of the
following are the same:

a) the hash key;

b) the first group hash key; and

¢) the second group hash key.

4. The method of claim 1, wherein at least one of the
following are secret:

a) the hash key;

b) the first group hash key; and

¢) the second group hash key.

US 7,720,250 B2

13

5. The method of claim 1, wherein the modifying further
comprises modifying the least significant bit of at least one of
the data values.

6. The method of claim 1, wherein the modifying further
comprises modifying a plurality of least significant bits of at
least one of the data values.

7. The method of claim 1, wherein the grouping further
comprises:

a) buffering a plurality of data values; and

b) grouping the buffered values as a group of a size desig-
nated by a size key.

8. The method of claim 1, further comprising repeating 1.c
through 1.f for as long as groups remain.

9. The method of claim 8, wherein the repeating further
comprises:

a) checking for a final group; and
b) if a final group is detected:
1) calculating a final first group hash for the final group;

ii) constructing a final watermark using the final first
group hash; and

iii) modifying the value of at least one of the data values
in the final group using the final watermark.

10. A tangible computer readable media containing a series
of instructions that when executed by one or more processors
performs a method for verifying a watermark comprising:

a) receiving an incoming stream of data values;

b) grouping the data values into groups, the groups includ-
ing a first group and a second group;

¢) calculating a first group hash using data values in the first
group and a first group hash key;

d) calculating a second group hash using data values in the
second group and a second group hash key;

e) generating a constructed watermark using the first group
hash and the second group hash; and
f) extracting an embedded watermark from the first group;

g) comparing the extracted watermark to the constructed
watermark; and

h) authenticating the first group using the results of the
comparison.

11. The method of claim 10, wherein at least two of the
following are the same:

a) the hash key;

b) the first group hash key; and

¢) the second group hash key.

12. The method of claim 10, wherein at least one of the
following are secret:

a) the hash key;

b) the first group hash key; and

¢) the second group hash key.

13. The method of claim 10, wherein the extracting further
comprises extracting the least significant bit of at least one of
the data values.

14. The method of claim 10, wherein the extracting further
comprises extracting a plurality of least significant bits of at
least one of the data values.

15. The method of claim 10, wherein the grouping further
comprises:

a) buffering data values; and

b) grouping the buffered data values as a group of a size

designated by a size key.

16. The method of claim 10, further comprising repeating
11.c through 11.h until no more groups remain.

10

20

25

40

45

50

60

65

14

17. The method of claim 16, wherein the repeating further

comprises:

a) checking for a final group; and

b) if a final group is detected:

1) calculating a final first group hash for the final group;

ii) generating a final constructed watermark using the
final first group hash;

iii) extracting a final embedded watermark from the final
group;

iv) comparing the final extracted watermark to the final
constructed watermark; and

v) authenticating the final group using the results of the
comparison.

18. A data watermarking system comprising:

a) a data hash calculator configured to calculate a data hash
using data values and a hash key;

b) a data grouper configured to group the data values into
groups, the groups including a first group and a second
group;

c¢) afirst group hash calculator configured to calculate a first
group hash using data values in the first group and a first
group hash key;

d) a second group hash calculator configured to calculate a
second group hash using data values in the second group
and a second group hash key;

e) awatermark constructor configured to construct a water-
mark using the first group hash and the second group
hash; and

) a data value modifier configured to generate modified
data values by modifying the value of at least one of the
data values in the first group using the watermark.

19. A data watermarking system according to claim 18,

further including:

a) a data receiver for receiving an incoming stream of the
modified data values;

b) a verification data grouper configured to group the modi-
fied data values into verification groups, the groups
including a first verification group and a second verifi-
cation group;

¢) a first verification group hash calculator configured to
calculate a first verification group hash using data values
in the first verification group and the first group hash
key;

d) a second verification group hash calculator configured to
calculate a second verification group hash using data
values in the second verification group and the second
group hash key;

e) a verification watermark generator configured to gener-
ate a verification constructed watermark using the first
verification group hash and the second verification
group hash; and

) an verification embedded watermark extractor config-
ured to extract a verification embedded watermark from
the first verification group;

g) a verification watermark comparator configured to com-
pare the verification embedded watermark to the verifi-
cation constructed watermark; and

h) an authenticator configured to authenticate the first veri-
fication group using results from the verification water-
mark comparator.

20. A data watermark verifier comprising:

a) a data receiver for receiving an incoming stream of data
values;

b) a data grouper configured to group the data values into
groups, the groups including a first group and a second

group;

US 7,720,250 B2

15

c)afirst group hash calculator configured to calculate a first
group hash using data values in the first group and a first
group hash key;

d) a second group hash calculator configured to calculate a
second group hash using data values in the second group
and a second group hash key;

e) a watermark generator configured to generate a con-
structed watermark using the first group hash and the
second group hash; and

16
) an embedded watermark extractor configured to extract
an embedded watermark from the first group;
g) a watermark comparator configured to compare the
extracted watermark to the constructed watermark; and

h) an authenticator configured to authenticate the first
group using results from the watermark comparator.

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

