ON THE TWO-REALIZABILITY OF CHAIN COMPLEXES

SUSHIL JAJODIA

ABSTRACT. We give a sufficient condition which insures the realizability of a two-dimensional chain complex satisfying Wall's condition by a two-dimensional CW-complex.

Let π be a group generated by x_1, \ldots, x_n . Let C_* be a two-dimensional chain complex

satisfying these conditions: (i) $H_1(C_*) = 0$, (ii) $H_0(C_*) \cong Z$, and (iii) the boundary operator $\partial_1 = (x_1 - 1, \dots, x_n - 1)$. In [7], Wall conjectured that under the above conditions C_* could be realized as the homology chains of a two-dimensional CW-complex. However, in [3], Dunwoody gave an example of a chain complex C_* which satisfied Wall's conditions but was not realizable. The purpose of this note is to give a sufficient condition which insures the realizability of C_* by a two-dimensional CW-complex.

Suppose there is a presentation $\mathcal{P} = (x_1, \ldots, x_n; R_1, \ldots, R_m)$ for the group π (see the Remark 2 below). We let $F = F(x_1, \ldots, x_n)$, the free group generated by x_1, \ldots, x_n and $R = N_F\{R_1, \ldots, R_m\}$, the normal closure in F of R_1, \ldots, R_m . Let $\overline{F} = F(r_1, \ldots, r_m)$, the free group on symbols r_1, \ldots, r_m , and let $\psi \colon F * \overline{F} \to F$ be the homomorphism taking $x_i \mapsto x_i$ and $r_j \mapsto R_j$.

Now if $\varphi: F \to F/R = \pi$ is the natural projection and $\kappa: F \to C_1$ is the crossed homomorphism, then by Corollary 4.4, p. 655 of [8], we can find words W_1, \ldots, W_m such that the matrix $\|\kappa(W_i)\|^{\varphi}$ is the boundary operator ∂_2 . The problem is that $N_F\{W_1, \ldots, W_m\}$ may not generate the entire normal subgroup R. Because each $W_i \in R$, we can write

$$W_{i} = \prod_{k=1}^{m_{i}} (x_{ik} R_{ik} x_{ik}^{-1})^{e_{ik}}$$

where $R_{ik} = R_j$, for some j, 1 < j < m, $x_{ik} \in F$, $\epsilon_{ik} = \pm 1$. Let $w_i = \prod_{k=1}^{m_i} (x_{ik} r_{ik} x_{ik}^{-1})^{\epsilon_{ik}}$ where if $R_{ik} = R_j$ in W_i , then $r_{ik} = r_j$ in w_i . Let J denote the

Received by the editors May 30, 1979 and, in revised form, August 17, 1979.

AMS (MOS) subject classifications (1970). Primary 55A05, 20F05.

 $m \times m$ matrix

$$J = \begin{bmatrix} \frac{\partial w_1}{\partial r_1} & \cdots & \frac{\partial w_1}{\partial r_m} \\ \vdots & & & \\ \frac{\partial w_m}{\partial r_1} & \cdots & \frac{\partial w_m}{\partial r_m} \end{bmatrix}.$$

Now we prove

LEMMA. The following are equivalent.

- $(1) N_{F \cdot \bar{F}} \{ w_1, \ldots, w_m \} = N_{F \cdot \bar{F}} \{ r_1, \ldots, r_m \}.$
- (2) $\{x_1, \ldots, x_n, w_1, \ldots, w_m\}$ forms a generating set for $F * \overline{F}$.
- (3) J has a right inverse.

PROOF. (1) \Rightarrow (2) is obvious.

(2) \Rightarrow (3). Suppose $\{x_1, \ldots, x_n, w_1, \ldots, w_m\}$ forms a generating set for $F * \overline{F}$. Then by the Inverse Function Theorem [1], the Jacobian which has the form

$$\begin{bmatrix} I_n & 0 \\ A & J \end{bmatrix}$$

has a right inverse B. By a result of Kaplansky [6], B is a two-sided inverse so that J has a right inverse.

(3) \Rightarrow (1). Suppose J has a right inverse H. Then the Jacobian which has the form

$$\begin{vmatrix} I_n & 0_m \\ A_{m \times n} & J_m \end{vmatrix}$$

has a right inverse

$$\begin{vmatrix} I_n & 0_m \\ -H_m A_{m \times n} & H_m \end{vmatrix}.$$

REMARK 1. Let J^{α} denote the image of J under the abelianizing homomorphism α acting on $Z(F*\overline{F})$. Then $N_{F*\overline{F}}\{w_1,\ldots,w_m\}=N_{F*\overline{F}}\{r_1,\ldots,r_m\}$ only if the determinant det J^{α} is a unit in $Z(F*\overline{F})^{\alpha}$. For $N_{F*\overline{F}}\{w_1,\ldots,w_m\}=N_{F*\overline{F}}\{r_1,\ldots,r_m\}$ implies that $\{x_1,\ldots,x_n,w_1,\ldots,w_m\}$ is a basis for $F*\overline{F}$. By Corollary 2 of [1], det J is a unit in $Z(F*\overline{F})^{\alpha}$ where

$$\bar{J} = \begin{vmatrix} I_n & 0 \\ A & J \end{vmatrix};$$

therefore det $\overline{J} = \det J$ is a unit in $Z(F * \overline{F})^{\alpha}$.

THEOREM. Notation as above. The chain complex C_* is realizable by a two-dimensional CW-complex if the Jacobian J has a right inverse.

PROOF. By the above lemma, we have $N_{F * \bar{F}}\{w_1, \ldots, w_m\} = N_{F * \bar{F}}\{r_1, \ldots, r_m\}$. Applying ψ we get $N_F\{W_1, \ldots, W_m\} = R$. Therefore if R denotes the cellular model of the presentation $\Re = (x_1, \ldots, x_n; W_1, \ldots, W_m)$ for π , then the universal cover \tilde{R} of R realizes the given chain complex C_* .

REMARK 2. It is possible that there does not exist a presentation \mathcal{P} with n generators and m relators. This would happen if the relation module $\overline{R} = \ker \partial_1$ is generated by fewer than m elements. (See Dyer [4].)

REMARK 3. Because both

$$\{x_1, \ldots, x_n, w_1, \ldots, w_m\}$$
 and $\{x_1, \ldots, x_n, r_1, \ldots, r_m\}$

form generating sets for the free group $F * \overline{F}$, we can convert one set to the other using Nielsen transformations (see [5]). This implies that P and R which are the cellular models of the presentations \mathcal{P} and \mathcal{R} , respectively, have the same simple homotopy type.

Example. Let π be the group $Z_5 \times Z_5 \times Z_5$ generated by a, b, and c, and let C_{\bullet} be the chain complex

where $\theta_1 = (a - 1, b - 1, c - 1)$ and θ_2 is the matrix

$$\begin{vmatrix} \frac{a^5 - 1}{a - 1} & 0 & 0 \\ 0 & \frac{b^5 - 1}{b - 1} & 0 \\ 0 & 0 & \frac{c^5 - 1}{c - 1} \\ 1 - b & a - 1 & 0 \\ 1 - c & 0 & a - 1 \\ 0 & 1 - c & b - 1 \end{vmatrix}$$

Let \mathcal{P} be the presentation $(a, b, c: a^5, b^5, c^5, [a^4, b], [a, c], [b, c])$. We see that we can take $W_1 = a^5$, $W_2 = b^5$, $W_3 = c^5$, $W_4 = aba^{-5}b^{-1}[a^4, b]^{-1}a^5a^{-1}$, $W_5 = [a, c]$, and $W_6 = [b, c]$ and the corresponding Jacobian J has a right inverse. Therefore the chain complex C_* is realizable. Indeed,

$$\mathfrak{R} = (a, b, c: a^5, b^5, c^5, [a, b], [a, c], [b, c]),$$

and the cellular models P and R have the same simple homotopy type.

REFERENCES

- 1. J. S. Birman, An inverse function theorem for free groups, Proc. Amer. Math. Soc. 41 (1973), 634-638.
- W. Cockcroft and R. M. F. Moss, On the two-dimensional realizability of chain complexes, J. London Math. Soc. 11 (1975), 257-262.
 - 3. M. J. Dunwoody, Relation modules, Bull. London Math. Soc. 4 (1972), 151-155.
 - 4. M. N. Dyer, Spaces dominated by finite two-dimensional CW-complexes (to appear).
- W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Pure and Appl. Math., vol. 13, Interscience, New York, 1966.
- M. S. Montgomery, Left and right inverses in group algebras, Bull. Amer. Math. Soc. 75 (1969), 539-540.
- 7. C. T. C. Wall, Finiteness conditions for CW-complexes. II, Proc. Roy. Soc. Ser. A 295 (1966), 129-139.
- 8. R. C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1950), 650-665.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73019

Current address: Department of Mathematics and Computer Science, University of Wisconsin, Stevens Point, Wisconsin 54481