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ON THE TWO-REALIZABILITY OF CHAIN COMPLEXES
SUSHIL JAJODIA

ABSTRACT. We give a sufficient condition which insures the realizability of a
two-dimensional chain complex satisfying Wall's condition by a two-dimensional
CW-complex.

Let o be a group generated by x,,..., x,. Let C_ be a two-dimensional chain
complex
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satisfying these conditions: (i) H,(C,) = 0, (i) Hy(C,) = Z, and (iil) the boundary
operator 9, = {(x, — 1,..., x, — 1). In [7], Wall conjectured that under the above
conditions C, could be realized as the homology chains of a two-dimensional
CW-complex. However, in [3], Dunwoody gave an example of a chain complex C,
which satisfied Wall’s conditions but was not realizable. The purpose of this note is
to give a sufficient condition which insures the realizability of C_ by a two-dimen-
sional CW-complex.

Suppose there is a presentation ¥ = (x,,..., x,: R,,..., R,) for the group =
(see the Remark 2 below). We let F = F(x,, ..., x,), the free group generated by
Xps .-y X, and R = N {R,, ..., R} the normal closure in Fof R, ..., R_. Let
F= F(ry,...,r,) the free group on symbols r,, . .., 7, and let y: Fs F— Fbe
the homomorphism taking x; - x; and r, = R,.

Now if ¢: F— F/R = = is the natural projection and x: F— C, is the crossed
homomorphism, then by Corollary 44, p. 655 of [8], we can find words
W, ..., W, such that the matrix |«(W)|® is the boundary operator 9,. The
problem is that N.{ W,, . .., W} may not generate the entire normal subgroup R.
Because each W, € R, we can write

W, = kH {meﬁx; I}!‘r

where R, = R, for some j, 1 <j<m, x; €EF g = 1. Let w, =
7 (X fucxa )* where if R, = R, in W, then r, = r, in w,. Let J denote the
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Now we prove

LEMMA. The following are equivalent.

(M Ne F{wi oo o Wa} = Ne pflrs o5 T} _
(2) (X« + s Xps Wiy « + + » W, } forms a generating set for F » F.
(3) J has a right inverse.

Prook. (1) = (2) is obvious. ~
(2) = (3). Suppose {x;, ..., Xy Wy, ..., W, } forms a generating set for F » F.
Then by the Inverse Function Theorem [1], the Jacobian which has the form

I, 0
A J

has a right inverse B. By a result of Kaplansky [6], B is a two-sided inverse so that
J has a right inverse.
(3) = (1). Suppose J has a right inverse H. Then the Jacobian which has the form

L, 0O,
""{i'l'l | J

has a right inverse

I, 0,
_Hn"{mxn Hn .
Thus, by the Inverse Function Theorem {x,, ..., X,, W, ..., W, } is a generating
set for F+F. We claim Ne_g{w, ..., w,)=N=N= Np glr,...."}

Clearly N C N. Therefore we have the short exact sequence 1| » N/N — Fs F/N
—+F+F/N—=1, Since Fs« F/N=F and F+ F/N = F, we must have N = N.
This completes the proof of the lemma.

REMARK 1. Let J® denote the image of J under the abelianizing homomorphism
a acting on Z(F « F). Then Ny z{w,, ..., w,} = Ng_ g{r,....7,} only if the

determinant det J* is a unit in Z(F = F)*. For Ng g(w), ..., Wy} =
Ng . #{r ..., 1y} implies that {x,, ..., X, W), ..., W,} is a basis for F « F. By
Corollary 2 of [1], det J is a unit in Z(F = F)" where
j_u}'n 0 :
A J

therefore det J = det J is a unit in Z(F » F)".
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THEOREM. Notation as above. The chain complex C, is realizable by a two-dimen-
sional CW-complex [f the Jacobian J has a right inverse.

ProoF. By the above lemma, we have Ng_ #{wp, ..., W} = Ng_#{ryu - s P}
Applying  we get N(W,, ..., W_} = R. Therefore if R denotes the cellular
model of the presentation R = (x,, ..., x,: W,, ..., W) for «, then the univer-

sal cover R of R realizes the given chain complex C,.

REMARK 2. It is possible that there does not exist a presentation % with »
generators and m relators. This would happen if the relation module R = ker 3, is
generated by fewer than m elements. (See Dyer [4].)

RemARK 3. Because both

(X oo s X Whoooowy ) and [, ..., %, 7. .., 10}

form generating sets for the free group F » F, we can convert one set to the other
using Nielsen transformations (see [S]). This implies that P and R which are the
cellular models of the presentations ¥ and %, respectively, have the same simple
homotopy type.
EXAMPLE. Let 7 be the group Z, X Z; X Z; generated by a, b, and ¢, and let C
be the chain complex
a9 &
G - ¢ - G
| H I
Zm* Z’ Zr

where d, = (a — 1, 5 — 1, ¢ — 1) and 9, is the matrix

7 =1 0 0
b — 1
0 T 0
5
- 1
0 0 pa—
1— 5 a—1 0
l1—c¢ 0 a-—1
0 1—2¢ b—1

Let & be the presentation (a, b, c: @°, b°, ¢? [a*, b, [a, ¢}, [, c]). We see that we
can take W, = a°, W, = b°, W, = ¢, W, = aba b ""[a*, b] '@’a™", W, = [a, c],
and W = [b, ¢] and the corresponding Jacobian J has a right inverse. Therefore
the chain complex C, is realizable. Indeed,

R = (a, b, c: a° b% ¢ [a, b], [a c], [, c]),

and the cellular models P and R have the same simple homotopy type.
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