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What is Cloud Computing? 

 Cloud Computing is the long dreamed vision of 

computing as a utility. 

 

 

XaaS:  
Software as a Service 

Infrastructure as a Service 

Platform as a Service 

Internet

Amazon 

EC2

Salesforce.

com

Google 

App 

Engine

Microsoft 

Azure

Client

Client
Client

Client

Client

Client

Cloud: data center 

hardware and software 

 

Utility computing: 
applications delivered as 

services over the Internet 
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Research Challenges on Security 

 Secure resource virtualization 

 Privacy-assured data services 

 Secure computation outsourcing 

 Business and security risk models 

 Service and data auditing 

 

 Some key issues 

 trust, multi-tenancy, encryption, compliance… 
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Moving into Cloud = Lost of Control  



Data Security Model 
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 Confidentiality & access control:  read/white/execute, protection of 

data from unauthorized disclosure and use 

 Integrity & availability:  assurance of data stored on the server are 

genuine, correct, and complete (i.e., no fabrication, no corruption, no 

lost) 

 Secure sharing and utilization … 

Data outsourcing 



Shall We Trust the Cloud Server? 
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Trusted server (on company’s premise)  

vs.  

Untrusted servers (third-party cloud service providers) 

 

Untrusted server           new security research paradigm 

 



New Security Problems 
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 Confidentiality 
 Access control? Traditional solutions rely on server enforce the policies 

 Integrity 
 You do not have a local copy of the data 

 Security of outsourced computation 

 Auditing 
 Customer/third-party auditing of the utility metering 

 

 

 Virtualization security 
 Shared resource environment => application confinement, side channel, 

covert channel 

 Monitoring perspective and attack detection 
 Traffic concentration point 

 Trustworthy architecture for secure cloud servers and end-
user devices 

 



Privacy 
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 Privacy is a bigger problem in cloud computing 

 Huge amount of data are in the cloud and will be there 
indefinitely 

 Encryption before outsourcing => utilization problem 

 Effective data sharing ? --- encryption schemes and key 
management 

 Search over encrypted data 

 General processing over encrypted data --- homomorphic 
encryption system  

 Efficiency of the solution 

 Privacy protection by non-crypto means  

 Distributing data onto multiple clouds 

 



Research on Privacy-Assured Data Service   

Secure data 
storage and 

sharing 

Public auditing 
of outsourced 

data 

Search over 
encrypted 

data 
…… 
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Traditional Server Mediated Access Control 

Data owner Users 
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Access Control List: 

      Bob, Alice, David, … 

I’m Bob || proof 

Storage Server 

 Data owner would store sensitive data on the server 

 Fine-grained access control means different users would have different 

access privileges (read/write) over the records/files that they are allowed 

to access 

 Trusted server to enforce the ACL policies 
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Encryption-Based Access Control 

Data owner Users 
Honest-but-Curious 

Server 
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   Confidentiality against server        

 

                    Encryption before outsourcing 
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System Model: multi-owner multi-user 

Alex 

Bob 
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David 

Doctor Carol 

of Hospital A 

PHR Server 

(e.g. Google Health, 

Microsoft Vault) 
Charlie 

(Data users may collude with each other) 

Data owners Data users 

Personal Health 

Record
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Challenges for Encryption-based Access Control 

 

 Fine-grained access control with system scalability 
 Single key for all files: no fine grained-ness 

 New key for each file: system scalability 

 

 User dynamics 
 User access privilege grant and revocation 

 

 Effective data utilization 

 Search/record matching 

 

17 



Choice of Encryption Scheme 

 Symmetric key encryption [Kallahalla03], [Damiani05], [Vimercati07], [Wang09] 

 Pros: Efficient for data encryption, can realize access control 
lists 

 Cons: Key management complexity, for large-scale systems, 
need an online trusted party to distribute keys, not 
collusion-resistant, users’ read/write rights are not separable, 
user list must be known in advance 
 

 Public key encryption or identity-based encryption 
[Goh03], [Ateniese05], [Hwang 07] , [Benaloh09] 

 Pros: Good for user authentication, scalable in user key 
management – one private key per user 

 Cons:  Encryption complexity linear with number of users 
(one encryption for each user), need to know authorized 
users before encryption 
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Attribute-based Encryption (ABE) 

 A generalization of identity-based encryption 
 IBE: one public key, one master private key 

 ABE: multiple public/private keys (i.e., attributes), allows complex rules 
specifying which private keys can decrypt which ciphertexts 

 

 Key-Policy ABE (KP-ABE) [Goyal06]  
 Ciphertexts are associated with “attributes” 

 Decryption policies (i.e., access structures) are embedded in private keys 

 

 Ciphertext-Policy ABE (CP-ABE) [Bethencourt07]  
 Private keys are associated with  “attributes” 

 Decryption policies (i.e., access structures)  are embedded in ciphertexts 
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Types of Attributes in PHR systems  

A= {PHR, Examination, Lab test, X-ray images} 

Data attributes    PHR 

Role attributes 
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  Alice 

 

 

 

Data Access Privileges /Access Policy 

Meta data 

Data attributes 

PHR, Examination, Lab 

test, X-ray image 

Role-based access policy 

Detailed Record 

Health Record Access privileges 

Bob 

AND 

Profession:  

Doctor  

Specialty: 

Gerontology 

Carol 

Role attributes 

OR 

medical 

history 

Personal 

info. 

OR 

medical 

history 
Lab test 
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What type of users 

can access this file?

What type of files 

this user can access?
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ABE-based Data Access Control 

 Fine-grained data access control: access structure can be 

any Boolean formula 

 Collusion-resistance: a property of ABE 

 Scalability: complexity of encryption/decryption linear to 

# of attributes/access structure size 

 

 Main techniques used: 

  ABE (KP-ABE, CP-ABE, MA-ABE) 
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Efficient User Revocation for ABE 

 Basic Idea: update a minimal set of attributes to disable the 

user’s  access structure. 

a b 

… 
user x 

AND 

AND 

Update:  a    a’ 

Attribute: a, b, c 
 

 
Attribute: a’, b, c 

data owner needs to   

       1) re-encrypt ALL  data files that have attribute a. 

        2) update ALL private keys of non-revoked users that contain attribute a  
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Overhead Reduction on Owner Side 

 Delegate file re-encryption to server 

 by proxy re-encryption 

Cloud Server Attribute: a, b, c, … Attribute: a’, b, c, … 

Update: a    a’ re-keyaa’ 

Ea = gas ga’s= (gas)a’/a 

re-keyaa’: a’/a Ciphertext component 

Ea’ = ga’s 

Cf. [Yu et al. ASIACCS’10] 
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 Delegate user private key update to server 

 By proxy re-encryption 

re-keyaa’ 

Cloud Server a b 

… 

a' b 

… 

user x user x 

SK: <Ska , SKb , …> SK: <Ska’ , SKb , …> SKa’= (SKa)
a’/a 

re-keyaa’: a’/a 

Overhead Reduction on Owner Side 
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 Computation done by server. 

 Lazy re-encryption:  

 a user’s private key is only updated at the next login  

 a data file is re-encrypted only when it is being accessed. 

 Revocation overhead on server is significantly reduced. 

 

 

 

 

Data owner 

re-key: data re-encryption, 

user private key update 

 

Overhead Reduction on Server Side 
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Overhead Reduction on User Side 
 Decryption delegation 

 Introduce a DUMMY attribute to enable decryption delegation. 

 

 

 

 

 

 

 

 

 

 Cloud servers are able to perform the major part of decryption on behalf of 
the user without knowing the data content. 

 Computation on user side is constant. 

Cloud Server 
a b 

… 

user x 

Attribute:  

a, b, c, …,  

AND 

DUMMY 

DUMMY 

Cf. [Yu et al. INFOCOM’10] 
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Comparison of Security and Functionality 

 

Our scheme [CCSW09] [VLDB07] 

Fine-grained access 

control 

Yes Yes  Yes 

Privacy guarantee Yes,  

Resistant to collusions 

Yes 

 

Yes,  Not resistant to 

user-server collusion 

Revocation 

granularity 

Attribute-level; User-level; 

on-demand 

N/A ACL;  

On-demand 

Policy 

expressiveness 

Arbitrary Boolean formula 

(KP-, CP-ABE), and conjunctive 

form for MA-ABE 

Disjunctive policy ACL  

[VLDB07] di’ Vimercati et. al., “Over-encryption: management of access control evolution on  

outsourced data,” in VLDB ’07. 

[CCSW09] Benaloh et.al., “Patient-controlled encryption: ensuring privacy of electronic 

medical records,” in CCSW ’09. 
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Comparison of Complexity 

Our Scheme [VLDB07] [CCSW09] 

Ciphertext Size O(tc) O(1) O(l) 

User Private Key  

Size 

O(tu) 

 

O(No) O(l*L*No) 

 

Public Key/info. Size O(|UD|+|UR|) O(No*Nu) O(No) 

Re-keying messages O(tu) O(Nu) N/A 
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Implementation/Simulation Results 

 Implemented KP-ABE on a 3.4GHz PC 

Worst case timing results 
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Limitations 
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 confidentiality to cloud data against cloud server 

 Cloud data service is merely a storage 

 Encryption and decryption has to be done at the user 

side. 

 Data computation on the server is a challenge 

 With secure cloud server, situation may change 

 Some computation can be done in the server 

 Data at rest still encrypted 

 Confidentiality, not integrity yet 



Research on Privacy-Assured Data Service  

Secure data 
storage and 

sharing 

Public auditing 
of outsourced 

data 

Search over 
encrypted 

data 
…… 
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Publicly Auditable Cloud Storage 

 Data are outsourced to semi-trusted storage server  

 Goal:  efficient cloud data integrity verification 
 Detect data corrupt or loss,  support data dynamics,  allow third-party (batch) 

verification 

 Challenge:  NO local copy of outsourced data 

Data Flow
Owner

Data
 A

uditin
g 

Delegatio
n

Security Message Flow

Public Data Auditing

Third Party Auditor

Cloud Servers

User

Resource 

constrained 

35 



Straightforward Approaches  
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 Apply random-sampling approach for probabilistic data 

integrity guarantee 

 Only check a small portion of the data each time VS. retrieve all at once. 

 Can achieve high probabilistic data integrity guarantee 

 

 

 

 

 

 

 

 

 

σ1 

m1 

σ2 

m2 

σ3 

m3 

σ4 

m4 

… 

… 

σn 

mn 

1. linear bandwidth cost (against sample size), 

2. verify block/authenticator pair one-by-one. 

Server 

Owner randomly sample  

block/authenticator pairs σ1 

m1 

σ2 

m2 

σ4 

m4 

Owner pre-computes an authenticator 

(e.g., signature) for each file block. 

σi =  MACsk(i||mi) 



Probabilistic Guarantee of Random Sampling  
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• Assume r out of n blocks are corrupted, how many blocks should we 
randomly sample to detect it with high probability?  
 

• Let X denote the number of corrupted blocks picked by the random-
sampling. Then sampling c blocks gives detection probability  

 
 

       

 

 

• If t = 1% of file is corrupted, randomly sample a constant of c = 460 
blocks to maintain detection probability  P = 0.99. 

• Error-correcting code can be used to correct small data errors. 

 

       

 

 



One step forward  

σ1 

m1 

σ2 

m2 

σ3 

m3 

σ4 

m4 

… 

… 

σn 

mn 

blocks and authenticators are 

combined into single value 

Server 

Auditor 
randomly sample  

file blocks σ1 

m1 

σ2 

m2 

σ4 

m4 

σ 

μ 

 General approach is to employ homomorphic authenticator 
technique to achieve constant-bandwidth remote data integrity 
checking. 
 Ateniese et al. CCS 2007 

 Shacham et al.  Asiacrypt 2008 

 Wang et al. ESORICS 2009 

 Erway et al. CCS 2009 

 

small and constant bandwidth 
only need to 

verify μ and σ 

Owner pre-computes 

an authenticator for 

each file block. 
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• Direct extension to data dynamics may have security problems. 
– E.g., block modification from mi to mi + Δm allows adversary to obtain Δm  

and               by dividing newly computed σi’ and original σi 

 

 

– Adversary could now maliciously modify any block ms to ms* = ms+Δm and forge 
legitimate authenticator σs* as: 
 

 

• New authenticator construction is required to avoid such attack, where  
H(name||i) must change for each modification operation. 

When extending to data dynamics 

m1 F m2 m3 
……. mn 

σ1 σ3 σ2 σn 
……. 

H. Shacham et al. 08 

BLS signature based 

G. Ateniese et al. 07 

RSA based 

v, name: randomly chosen labels for file names; 

d, x:  related private keys; H(.), h(.) : hash to point functions. 
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When extending to data dynamics 

m1 F m2 m3 
……. mn 

σ1 σ3 σ2 σn 
……. H. Shacham et al. 08 

BLS signature based 

G. Ateniese et al. 07 

RSA based 

• A secure authenticator must enforce the block index/sequence 
information.  

– Prevent adversary from using authenticators to obtain proofs for different blocks. 

– E.g., use any valid (ms ,σs) pair to pass challenges for corrupted mt successfully. 

 

• But keeping index information makes data updates highly inefficient. 
– E. g., insert a block at any position will affect update (re-computation) on 

authenticators for all the following blocks. 
 

• Can we eliminate the index information but still enforce block sequence 
without affecting the security? 

 
 



Eliminating index info … 
 Construct authenticators using  H(mi)  instead of  H(name||i). 

 

 

 New authenticator supports secure block modification operation. 

 H(mi) changes for every block updates, so the aforementioned attack 

on block modification is no longer valid. 

 

 

 

 Elimination of index for efficient block insertion/deletion operation. 

 When inserting/deleting a block, authenticators for all other blocks remains 

the same, i.e., no authenticator re-computation is required. 

 

 

 

 

 

 

 

 

 

 

 

We are yet to need a way to enforce the block index sequence. 



Enforce order of data blocks …  
 Propose a novel sequence-enforced Merkle Hash Tree (sMHT). 

 

 

 

 

 

 

 

 

 

 Construct the sMHT with an ordered set {H(mi)}i=1,…,n as the leaf 

nodes, and use root R to ensure the block index information: 

 

 

 

By following the left-to-right index sequence and the way of computing the tree 
root, we can uniquely determine both the value and position of any leaf block(s). 

Auxiliary Authentication Information 

(AAI) 

h(x1) h(x2) h(x3) h(x4)

ha hb

Root Rhr

A B

x1 x2 x3 x4

Sequence of access to the ordered set of leaves 

To verify the value and position of x2,  we 
use tree root R and AAI = {h(x1), hb}: 

 

1. Compute ha = h(h(x1) || h(x2)); 

2. Verify if R = h(ha || hb). 

xi = H(mi), i = 1,…, n 



Revisiting Existing Approaches 

• μ = v1m1+v5m5+v6m6+v8m8  may leak the data to TPA. 

– Direct adoption is unsuitable for public auditing. 

• Encrypting data before outsourcing? NOT satisfying.  

– Method not self-contained; Leave the problem to key management.  

– An overkill for unencrypted data (outsourced libraries, scientific data etc.). 

 

 

 

σ1 

m1 

σ2 

m2 

σ3 

m3 

σ4 

m4 

… 

… 

σn 

mn File 

{v1, v5, v6, v8} 

     randomly-chosen coefficients 
server combines corresponding  

blocks and authenticators 
TPA 

Cloud Server Owner 
outsource 

σi 

μ = v1m1+v5m5+v6m6+v8m8 

with gx 
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Privacy-preserving Public Auditing 
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σ1 

m1 

σ2 

m2 

σ3 

m3 

σ4 

m4 

… 

… 

σn 

mn 

{v1, v5, v6, v8} 

     randomly-chosen coefficients 

server combines corresponding  

blocks and randomly masks it. 

μ = v1m1+v5m5+v6m6+v8m8 

TPA 

Cloud Server 

• Construct homomorphic aggregation with random masking. 

• Achieve privacy-preserving auditing regardless of data encryption. 

 

verify   μ  and σ 

Random masking must not affect storage correctness validation. 

With randomly masked  μ  ,  owner 

data content is no longer exposed! 



μ 

Privacy-preserving Public Auditing 
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σ1 

m1 

σ2 

m2 

σ3 

m3 

σ4 

m4 

… 

… 

σn 

mn 

{v1, v5, v6, v8} 

     randomly-chosen coefficients 

μ = v1m1+v5m5+v6m6+v8m8 

TPA 

Cloud Server 

1. Cloud server picks a random r.  

2. Computes  

3.  μ  = r + γ μ mod p. 

• System Parameters:                                 ,                       . 
                              ,                        , 

 



Research on Privacy-Assured Data Service  

Secure data 
storage and 

sharing 

Public auditing 
of outsourced 

data 

Search over 
encrypted 

data 
…… 
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Privacy-preserving search over encrypted 

cloud data 

56 

Single-owner or multi-owner 

 

 

 

 

 

 

 

 

 

 

multi-user 

 

 

 

 

 

 

 

 

 

Index 

 

 

 

 

 

 

 

 

 

 

 Threat Model 
 Cloud server: honest-but-curious (honestly follow the protocol but try to learn 

private information about user’s data); can collude with some users 

 Users: may try to gain unauthorized search access to data; can collude with each 
other to derive search access beyond their allowed ones 



Privacy Concerns 
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 Data privacy 
 Confidentiality of the outsourced data contents 

 Index privacy 
 Confidentiality of data index (if any) 

 Search privacy  
 Keyword privacy 

 The keyword in user’s query should be hidden 

 Trapdoor is essentially an “encrypted” version of keywords 

 Search pattern privacy 

 A.k.a. trapdoor unlinkability: two queries for the same keyword shall not be linked 

 Requires non-deterministic trapdoor construction   

 Trapdoor unmalleability 
 Should not derive a new trapdoor from existing ones 

 Access privacy  
 Hides the access pattern (sequence of returned documents) 

 All against server 



Practical Techniques for Searches on 

Encrypted Data 

59 

D. X. Song, D. Wagner, and A. Perrig [S&P 2000] 

 Scenario: single contributor, outsourced documents 

 Technique overview: symmetric key, single keyword search 

 Non-Index: Perform a sequential scan without an index  

 Setup and Notations:  

 Document:  sequence of fixed length words 

 Pseudorandom Generator G and seed: 

 S  G ( seed ) ,   Si  Gi ( seed ) 

 Pseudorandom Function F  and key K : 

  FK  maps n-m bits to m bits 

 Wi -1 

n bits 

Wi 

n bits 

Wi+1 

n bits 

… … 

Si-1 

m bits 

… … Si 

m bits 

Si+1 

m bits 



Practical Techniques for Searches on 

Encrypted Data (cont’d) 
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•  Pros :  

 Provably secure 

 Derived from security of pseudorandom function/permutation 

 Supporting data dynamics 

 A new document can be simply encrypted and appended to the already-stored 

ciphertext 

 No additional storage 

 

•  Cons : 

 Deterministic trapdoor 

 Inefficient: linear scan over encrypted data 

 Support only single fixed-length word search 

 

 

 

To do better in efficiency,  index-based approach can be adopted!  



Index-based Approaches 
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Secure indexes: E-J. Goh [http://eprint.acr.org/2003/216/] 

 

 Index by document vs. index by keyword 

 

 Build secure index for documents 

 Generate a sub-index for every document consisting of keywords in it 

 

 Techniques used 

 1. Bloom filters – efficient test for set membership 

 2. PRF – pseudo-random functions 

 3. PRG – pseudo-random generator 

 

 

 

 



Secure index Construction 

68 

 Keygen(s):  

 Given a security parameter s,  

 choose a pseudo-random function f : {0, 1}n ×{0, 1}s 
 {0, 1}s 

and the master key Kpriv = (k1, . . . , kr) R {0, 1}sr. 

 

 Trapdoor(Kpriv,w) 

 Given the master key Kpriv = (k1, . . . , kr)    {0, 1}sr
 and word w, 

output the trapdoor for word w as  

  Tw = (f(w, k1) , . . . , f(w, kr))    {0, 1}sr 



Secure index Construction (cont’d) 
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 BuildIndex(D,Kpriv):  

 a document D comprising of an unique identifier Did      {0, 1}n , 

 a list of words (w0, . . . ,wt)    {0, 1}nt,  

 and Kpriv = (k1, . . . , kr)    {0, 1}sr. 

  1. For each unique word wi for i    [0, t], compute  

  (a) the trapdoor: (x1 = f(wi, k1) , . . . , xr = f(wi, kr))  

  (b) the codeword for wi in Did:  

   (y1 = f(Did, x1) , . . . , yr = f(Did, xr))    {0, 1}sr, 

  (c) insert y1, . . . , yr into Did’s Bloom filter (BF) 

Non-deterministic “encryption”:  same keyword is 

mapped to different bits for different documents 



Secure index Construction (cont’d) 
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 BuildIndex(D,Kpriv):  

  2. Compute an upper bound u on the number of words 

in D.  

  E.g., extremely assumes one word for every byte in D (after 

encryption). 

  3. Blind the index by inserting (u−v)r number of 1’s 

uniformly at random in BF;  

  v is the number of unique words among the set of t words (w0, . . . 

,wt).  

  4. Output IDid = (Did , BF) as the index for Did. 

Blind to make every BF have similar number of 1s. 



Secure index Construction (cont’d) 
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 Search(Tw, ID):  

 the trapdoor Tw = (x1, . . . , xr) for word w; 

 the index IDid = (Did , BF) for document Did. 

  1. Compute the codeword for w in Did:  

   (y1 = f(Did, x1) , . . . , yr = f(Did, xr)). 

  2. Test if BF contains 1’s in all r locations denoted by y1, . . . 

, yr. 

  3. If so, output 1; Otherwise, output 0.   



Secure indexes - Efficiency 
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 Cost of Algorithms 

 choosing suitable Bloom filter parameters 

 choosing pseudo-random function f  

 keyed hash function HMAC-SHA1: {0, 1}* × {0,1}160 
 {0,1}160 

 handles arbitrary length word 

 assuming that computing a pseudo-random function is a 

constant time operation, testing/inserting entries into a Bloom 

filter are constant time operations 

 Trapdoor algorithm takes O(r) time;  

 The BuildIndex algorithm on a document takes time linear in 

the number of words in the document; 

 The SearchIndex algorithm takes O(r) time on a document 

 



Secure indexes – Summary   
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 Pros: 

 Support variable-length words 

 Search efficiency O(Nr) 

 N is the number of files and r is the number of hash functions 

 Dynamics: a new BF can be generated and outsourced to 

server along with the new document 

 

 Cons: 

 Storage: bloom filter introduces large storage for each file. 

 Weak search semantics: simple boolean keyword search; very 

hard to control the false positive 



Searchable Symmetric Encryption 

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky [CCS 2006] 

•  Scenario: single contributor, outsourced documents 

•  Technique overview: SKC, single keyword search 

•  Inverted index: an array A and a lookup table T for the whole dataset 

 Build a linked list Li for each unique keyword Wi where the elements of 

the list are the identifiers of all documents which contains Wi 

Austin 

 

Boston 

 

Washington 



• BuildIndex: an array A and a lookup table T for the whole dataset 

 Create a linked list for each keyword, consisting IDs of all the documents that 

contain the keyword. 

 The elements in all linked lists are then encrypted and put into the array A in a 

mixed order 

Austin 

 

Boston 

 

Washington 

Array A 
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Searchable Symmetric Encryption (cont’d) 



•BuildIndex: an array A and a lookup table T for the whole dataset 

 The elements in all linked lists are then encrypted and put into the array A in a 

mixed order (P: PRP; F: PRF) 

F(Austin) = KA P(Austin) Austin 

Boston 

Washington 

F(           ) = KB 

F(Washington) = KW 

P(Boston) 

P(Washington) 

Look-up Table T Array A 

Searchable Symmetric Encryption (cont’d) 



Search : 

Boston 

addr := P(Boston) 

key   := F(Boston) 

Trapdoor := (addr, key) 

D8, 

D10 

T A 
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Searchable Symmetric Encryption (cont’d) 



Searchable Symmetric Encryption (cont’d) 
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• Pros: 

 Privacy: hides everything else except search pattern 

(deterministic trapdoor) and access pattern; provably secure 

 Search Efficiency: server’s computation overhead is linear with 

the number of the documents which contains the querying 

keyword 

 Storage: better than bloom filter 

 

• Cons: 

 Support only single keyword search 

 Dynamics: to insert a document, the data owner has to 

retrieve the whole index, decrypt it and build a new index. 

 

 

 

 



Public Key Encryption with Keyword Search 
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D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persianoz [EUROCRYPT 

2004] 

•  Scenario: multiple contributors, e.g., email gateway 

•  Technique overview: PKC, bilinear map, BDH(Bilinear Diffie-Hellman 

Problem) 

•  Index: a list of encrypted keywords appended as an index per document 

 Contributor of each document encrypts a set of keywords individually with the 

public key 

 These encrypted keywords are then appended to the encrypted document 

•    

 

(Apub is the public key of the data owner) 

  ),(),...,,( , 1 kpubpubA WAPEKSWAPEKSmsgE
pub



Public Key Encryption with Keyword Search 

83 

•  PEKS Construction 

Setup 

 two groups           of prime order p,  

 a bilinear map 

 Bilinear property: for any integer                     , 

 Picking a random            and generator g of G1 

 

BuildIndex 

 Then for keyword W,  

 

Search 

 With trapdoor for W, 

 Test every PEKS 

1 2,G G

211: GGGe 

xyyx ggegge ),(),( ],1[, pyx 
*

pZ

  privpub AghgA  and ],[

   *

2 1 2( , ) [ , ( )], , for a randomr r

pub pPEKS A W g H t where t e H W h G r Z   

 1 1wT H W G


 

2 2( ( , )) ( )r

wH e T g H t

Index privacy: same keyword 

encrypted differently 



Public Key Encryption with Keyword Search 
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• Pros: 

 Multiple contributors 

 Example applications: secure email gateway, e.g., spam filtering 

 

•  Cons: 

 Search Inefficiency 

 Linearly scan the appended encrypted keywords in every document, 
and do pairing computation 

 keyword privacy cannot be guaranteed (common drawback of 
PKC-based SE) 

 Dictionary attack: Server encrypts every possible keyword with the 
public key, and then do the search with trapdoor. Based on the search 
result, server knows the keyword hidden in the trapdoor. 

 



 Ranked retrieval are usually more effective than Boolean search. 

 Ranking is not supported in existing searchable encryption techniques 

 

Extending to Ranked Search 

Ranking benefits 
• Find most/least relevant 
information quickly 
• Avoids unnecessary 
network traffic …… 

…… 

…… 
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 Targets at  

 

 Retrieve files in a ranked order (top-k) according to certain relevance criteria. 

 

 Achieved through frequency based statistical measurement from IR  

 Ranking relevance : term (keyword) frequency × inverse document frequency. 

 

 

 

 

 

 For single keyword search: keyword frequency would suffice for ranking. 

 

Ranked Search over Encrypted Data 

Large scale system usability 
file retrieval accuracy 
user searching experience 

F1 F2 F3 F4 

W1 3 6 0 0 

W2 2 0 3 5 

W3 5 4 0 1 

Frequency table with 4 files 

One simple example for TF × IDF 
rule: 

 

Score (W1, F1) = [3/(3+2+5)] × log 

(4 / 2)  
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 OPSE is a deterministic encryption scheme where the numerical ordering of 
the plaintexts gets preserved. 

 State-of-the-art studied by Boldyreva et al. in Eurocrypt 2009. 

 

 

 

 

 

 

 

 

 It’s suggested M = N/2 > 80, then # of M-out-of-N combinations > 280. 

 We skipped many details of OPSE security definition. 

 

One Useful Technique:  

Order-preserving Symmetric Encryption (OPSE) 

Informally, the order-preserving 
encryption corresponds to 
randomly choosing a 
combination of M-out-of-N 
ordered items. 

 

 

1 

2 

3 

… 

M-1 

M 

 

 

 

 

1 

2 

3 

4 

5 

… 

N-2 

N-1 

N 

 

 

…… 

Domain 

Range 
order-preserved mapping a 

set of numerical plaintexts 
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 Brief overview of OPSE plaintext-to-ciphertext assignment process.  

 Plaintext m is first mapped to a non-overlapping interval in range, determined by 

encryption key. Ciphertext c is then chosen by using numerical plaintext m as seed. 

 

 

 

 

 

 

 

 

 

 We propose to further incorporate the unique file IDs {Fi} together 

with the plaintext m’s as the final seed for ciphertext selection. 

One-to-many Order-preserving Mapping 

 

 

1 

2 

3 

… 

M-1 

M 

 

 

 

 

1 

2 

3 

4 

5 

… 

… 

… 

N-2 

N-1 

N 

 

 

 

 

1 

2 

3 

4 

5 

… 

… 

… 

N-2 

N-1 

N 

 

 

random ciphertext 

selection via seed “1” 

random ciphertext 

selection via seed “2” 

…… 
…… 

random ciphertext 

selection via seed “M” 

plaintext mapped to random-

sized non-overlapping interval 

…… 
…… 

Domain 

Range 

1 is always 
mapped to 3 
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Extending to Multiple-Keyword Ranked Search 

 Typical user’s search preference 

 Data users do multiple-keyword search 

 single keyword search often yields far too coarse result 

 Returned documents should be sorted by their similarity with query 

 Documents with more keywords matches will be given higher rank scores  

 

 

 

 

Challenge: how to realize efficient multi-keyword ranked search over encrypted data? 

File 1: A,B, C, D 

File 2: A, C 

File 3: B, D 



Coordinate matching 
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 “Coordinate matching” principle 

 as many matches as possible 

 Widely used metric in IR – information retrieval 

 Coordinate matching in plaintext: 

1 

1 

1 

1 

… 

1 

Index vector: p 

1 

1 

1 

0 

… 

0 

Query vector: q 

A 

B 

C 

D 

… 

 

X 

Keywords Keywords 
A 

B 

C 

 

… 

 

 

Dot product 
Rank score = 3 

Question: how to realize coordinate matching over encrypted data, 

without leaking user privacy? 

“Inner Product Similarity”  



Privacy-Preserving in Known-Ciphertext 

Model 

Subindex Ii 

 BuildIndex (F, SK)  

 run by data owner 

 F = {F1, F2,…, Fm} 

 

 

 

 

 



Privacy-Preserving in Known-Ciphertext 

Model 

Trapdoor 

𝑇𝑊  

 Trapdoor (𝑊 )  

 run by data owner or data users 

 𝑊  is the query keyword set 

 

 

 

 

 



Privacy-Preserving in Known-Ciphertext 

Model 

 Query(𝑇𝑊 , k, I) 

 run by cloud server 

 compute the inner product (similarity score) as r(Di·Q+εi)+t 

 sort all products 

 return top-k ranked document id list 

 

 

 

 

 

 

 

 



Privacy-Preserving in Known-Ciphertext 

Model 

 Functionality 

 ε has a great impact on the search accuracy 

 𝜀~N(𝜇, 𝜎2) 

 𝜎 influences the order of similarity scores 

 

 Efficiency 

 In BuildIndex or Trapdoor, two multiplications of a (n + 2) X (n + 

2) matrix and a (n + 2)-dimensional vector are involved to 

generate each subindex or trapdoor 

 In Query, the final similarity score is computed through two 

multiplications of two (n + 2)-dimensional vectors 

 

 



Similarity-based Multiple keyword ranking 

search 



Preliminaries 

 Similarity evaluation function 

 𝐶𝑜𝑠 𝐷𝑑 , 𝑄 =
1

𝑤𝑑𝑤𝑞
 𝑤𝑑,𝑡 ∙ 𝑤𝑞,𝑡𝑡∈𝑄∩𝐷𝑑

 

 

 where 𝑤𝑑,𝑡 = 1 + l𝑛 𝑓𝑑,𝑡 , 𝑤𝑞,𝑡 = l𝑛 1 +
𝑁

𝑓𝑡
, 𝑤𝑑 =

( 𝑤
2

𝑑,𝑡
𝑡𝑛
𝑡=𝑡1

) 
1 2 
, 𝑤𝑞 = ( 𝑤

2
𝑞,𝑡

𝑡𝑛
𝑡=𝑡1

) 
1 2 

 

 

 𝐷𝑑 = (𝑤𝑑,𝑡1 , 𝑤𝑑,𝑡2 , … , 𝑤𝑑,𝑡𝑛)/𝑤𝑑 

 

 𝑄 = (𝑤𝑞,𝑡1 , 𝑤𝑞,𝑡2 , … , 𝑤𝑞,𝑡𝑛)/𝑤𝑞 

 

 0 ≤ 𝐶𝑜𝑠 𝐷𝑑 , 𝑄 < 1 
 

 

 



Secure Index Scheme 

 GenIndex 

Normalized  𝑤𝑑,𝑡  

... 

𝐷𝑑,𝑖 

𝑆𝑖 

𝐷𝑑,𝑖
′ 

𝐷𝑑,𝑖
′′ 

Vector splitting 

𝑀1,𝑖 

𝑀2,𝑖 

𝑀1,𝑖
𝑇 𝐷𝑑,𝑖

′ 

𝑀2,𝑖
𝑇 𝐷𝑑,𝑖

′′ 

𝐷𝑑,𝑖  |𝑇𝑖|-dimension  



Secure Index Scheme 

 GenQuery 

Normalized  𝑤𝑞,𝑡  

... 

𝑄𝑖 

𝑆𝑖 

𝑄𝑖
′ 

𝑄𝑖
′′ 

Vector splitting 

𝑀1,𝑖 

𝑀2,𝑖 

𝑀1,𝑖
−1𝑄𝑖

′ 

𝑀2,𝑖
−1𝑄𝑖

′′ 

𝑄𝑖  |𝑇𝑖|-dimension  



Secure Index Scheme 

 SimEvaluation: 

 𝑐𝑜𝑠𝑖𝑛𝑒 𝐷𝑑,𝑖 ,𝑄𝑖  

= 𝑀1,𝑖
𝑇 𝐷𝑑,𝑖

′, 𝑀2,𝑖
𝑇 𝐷𝑑,𝑖

′′
∙ {𝑀1,𝑖

−1𝑄𝑖
′, 𝑀2,𝑖

−1𝑄𝑖
′′} = 𝐷𝑑,𝑖 ∙ 𝑄𝑖 

 

 The final similarity score for document d is: 
 

  𝐷𝑑,𝑖 ∙ 𝑄𝑖 = 𝐷𝑑 ∙ 𝑄
ℎ
𝑖=1  

 

 

 

 

 

 



21 2.5 

25 2.4 

22 2.3 

25 2.4 

22 2.3 

20 2.3 

25 2.4 

22 2.3 

10 2.2 

22 2.3 

10 2.2 

13 2.2 

0.6 0.5 0.2 

0.6 

1.0 

Multi-dimensional Algorithm Based Search 

 Searching the best 3 objects 

 

0.8 1.0 1.0 

0.8 0.6 

0.5 0.9 0.1 0.5 0.7 1.0 0.8 1.0 0.7 

20 

11 

21 

16 

13 18 24 1 

5 6 

17 7 22 25 

2 

23 15 14 12 10 

3 

9 

8 

4 

0.4 0.2 0.4 0.6 0.3 0.9 1.0 0.5 0.1 

0 

0.3 

19 

0.0 

0.0 

S1 

S2 

S3 S4 S5 

S6 

S7 

S8 

S9 S10 

1.0 

B(S2)=1.0+1+1= 3.0 

0.6 

B(S3)=1.0+0.6+1= 2.6 

0.6 

B(S)=1.0+0.6+0.6= 2.2 

object rating 

1st 

2nd 

3rd 

10 

2.2 

0.5 

B(S)=1.0+0.6+0.5= 2.1 

4 

2.1 

8 

2.1 

0.2 

B(S)=1.0+0.6+0.2= 1.8 1.8 

TK 

0.4 

B(S4)=1.0+0.4+1= 2.4 

> 

0.9 

B(S)=1.0+0.4+0.9= 2.3 

22 

2.3 

0.5 

2.3 

1.9 

0.3 

0.2 

2.2 

1.0 

2.2 

0.8 

2.8 

0.6 

2.4 

1.0 

2.4 

0.8 

2.2 

0.4 

2.2 

0.6 

2.6 

1.0 

2.6 

0.7 

2.3 

0.5 

2.1 

0.9 

2.5 

1.0 

2.5 

0.8 

2.3 

0.5 

2.1 



Performance analysis 

 Search efficiency 

  



Extending to Fuzzy Search 
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 Single keyword fuzzy search 

 Multiple keyword fuzzy search  



Thank You ! 
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