
Toward Privacy-Assured

Cloud Data Service

Wenjing Lou

Complex Networks and Security Research Lab (CNSR)

Virginia Polytechnic Institute and State University

What is Cloud Computing?

 Cloud Computing is the long dreamed vision of

computing as a utility.

XaaS:
Software as a Service

Infrastructure as a Service

Platform as a Service

Internet

Amazon

EC2

Salesforce.

com

Google

App

Engine

Microsoft

Azure

Client

Client
Client

Client

Client

Client

Cloud: data center

hardware and software

Utility computing:
applications delivered as

services over the Internet

3

Research Challenges on Security

 Secure resource virtualization

 Privacy-assured data services

 Secure computation outsourcing

 Business and security risk models

 Service and data auditing

 Some key issues

 trust, multi-tenancy, encryption, compliance…

7

Moving into Cloud = Lost of Control

Data Security Model

8

 Confidentiality & access control: read/white/execute, protection of

data from unauthorized disclosure and use

 Integrity & availability: assurance of data stored on the server are

genuine, correct, and complete (i.e., no fabrication, no corruption, no

lost)

 Secure sharing and utilization …

Data outsourcing

Shall We Trust the Cloud Server?

10

Trusted server (on company’s premise)

vs.

Untrusted servers (third-party cloud service providers)

Untrusted server new security research paradigm

New Security Problems

11

 Confidentiality
 Access control? Traditional solutions rely on server enforce the policies

 Integrity
 You do not have a local copy of the data

 Security of outsourced computation

 Auditing
 Customer/third-party auditing of the utility metering

 Virtualization security
 Shared resource environment => application confinement, side channel,

covert channel

 Monitoring perspective and attack detection
 Traffic concentration point

 Trustworthy architecture for secure cloud servers and end-
user devices

Privacy

12

 Privacy is a bigger problem in cloud computing

 Huge amount of data are in the cloud and will be there
indefinitely

 Encryption before outsourcing => utilization problem

 Effective data sharing ? --- encryption schemes and key
management

 Search over encrypted data

 General processing over encrypted data --- homomorphic
encryption system

 Efficiency of the solution

 Privacy protection by non-crypto means

 Distributing data onto multiple clouds

Research on Privacy-Assured Data Service

Secure data
storage and

sharing

Public auditing
of outsourced

data

Search over
encrypted

data
……

13

Traditional Server Mediated Access Control

Data owner Users

14

Access Control List:

 Bob, Alice, David, …

I’m Bob || proof

Storage Server

 Data owner would store sensitive data on the server

 Fine-grained access control means different users would have different

access privileges (read/write) over the records/files that they are allowed

to access

 Trusted server to enforce the ACL policies

http://images.google.com/imgres?imgurl=http://4.bp.blogspot.com/_GYvJmtdYdok/SWut3KaKOyI/AAAAAAAAAGk/mgfKzWRWKg4/s400/computer-user.jpg&imgrefurl=http://safersrilanka.blogspot.com/2009_01_01_archive.html&usg=__AqFHepxnaK6YpODDnMXduXQUrAs=&h=239&w=239&sz=18&hl=zh-CN&start=3&um=1&itbs=1&tbnid=v06AFaooWejNmM:&tbnh=109&tbnw=109&prev=/images?q=computer+user&um=1&hl=zh-CN&lr=&sa=N&tbs=isch:1
http://images.google.com/imgres?imgurl=http://www.hanksites.com/images/ComputerUser.gif&imgrefurl=http://www.nsf.gov/attachments/115022/public/2009_06_10_att.pptx&usg=__3Zybb5sn3g7gC2Pf4RkkSaJ0Sag=&h=285&w=287&sz=16&hl=zh-CN&start=8&um=1&itbs=1&tbnid=xIYxLxxB9Twd1M:&tbnh=114&tbnw=115&prev=/images?q=computer+user&um=1&hl=zh-CN&lr=&tbs=isch:1

Encryption-Based Access Control

Data owner Users
Honest-but-Curious

Server

15

 Confidentiality against server

 Encryption before outsourcing

http://images.google.com/imgres?imgurl=http://4.bp.blogspot.com/_GYvJmtdYdok/SWut3KaKOyI/AAAAAAAAAGk/mgfKzWRWKg4/s400/computer-user.jpg&imgrefurl=http://safersrilanka.blogspot.com/2009_01_01_archive.html&usg=__AqFHepxnaK6YpODDnMXduXQUrAs=&h=239&w=239&sz=18&hl=zh-CN&start=3&um=1&itbs=1&tbnid=v06AFaooWejNmM:&tbnh=109&tbnw=109&prev=/images?q=computer+user&um=1&hl=zh-CN&lr=&sa=N&tbs=isch:1
http://images.google.com/imgres?imgurl=http://www.hanksites.com/images/ComputerUser.gif&imgrefurl=http://www.nsf.gov/attachments/115022/public/2009_06_10_att.pptx&usg=__3Zybb5sn3g7gC2Pf4RkkSaJ0Sag=&h=285&w=287&sz=16&hl=zh-CN&start=8&um=1&itbs=1&tbnid=xIYxLxxB9Twd1M:&tbnh=114&tbnw=115&prev=/images?q=computer+user&um=1&hl=zh-CN&lr=&tbs=isch:1

System Model: multi-owner multi-user

Alex

Bob

16

David

Doctor Carol

of Hospital A

PHR Server

(e.g. Google Health,

Microsoft Vault)
Charlie

(Data users may collude with each other)

Data owners Data users

Personal Health

Record

http://images.google.com/imgres?imgurl=http://4.bp.blogspot.com/_GYvJmtdYdok/SWut3KaKOyI/AAAAAAAAAGk/mgfKzWRWKg4/s400/computer-user.jpg&imgrefurl=http://safersrilanka.blogspot.com/2009_01_01_archive.html&usg=__AqFHepxnaK6YpODDnMXduXQUrAs=&h=239&w=239&sz=18&hl=zh-CN&start=3&um=1&itbs=1&tbnid=v06AFaooWejNmM:&tbnh=109&tbnw=109&prev=/images?q=computer+user&um=1&hl=zh-CN&lr=&sa=N&tbs=isch:1
http://images.google.com/imgres?imgurl=http://www.hanksites.com/images/ComputerUser.gif&imgrefurl=http://www.nsf.gov/attachments/115022/public/2009_06_10_att.pptx&usg=__3Zybb5sn3g7gC2Pf4RkkSaJ0Sag=&h=285&w=287&sz=16&hl=zh-CN&start=8&um=1&itbs=1&tbnid=xIYxLxxB9Twd1M:&tbnh=114&tbnw=115&prev=/images?q=computer+user&um=1&hl=zh-CN&lr=&tbs=isch:1

Challenges for Encryption-based Access Control

 Fine-grained access control with system scalability
 Single key for all files: no fine grained-ness

 New key for each file: system scalability

 User dynamics
 User access privilege grant and revocation

 Effective data utilization

 Search/record matching

17

Choice of Encryption Scheme

 Symmetric key encryption [Kallahalla03], [Damiani05], [Vimercati07], [Wang09]

 Pros: Efficient for data encryption, can realize access control
lists

 Cons: Key management complexity, for large-scale systems,
need an online trusted party to distribute keys, not
collusion-resistant, users’ read/write rights are not separable,
user list must be known in advance

 Public key encryption or identity-based encryption
[Goh03], [Ateniese05], [Hwang 07] , [Benaloh09]

 Pros: Good for user authentication, scalable in user key
management – one private key per user

 Cons: Encryption complexity linear with number of users
(one encryption for each user), need to know authorized
users before encryption

 18

Attribute-based Encryption (ABE)

 A generalization of identity-based encryption
 IBE: one public key, one master private key

 ABE: multiple public/private keys (i.e., attributes), allows complex rules
specifying which private keys can decrypt which ciphertexts

 Key-Policy ABE (KP-ABE) [Goyal06]
 Ciphertexts are associated with “attributes”

 Decryption policies (i.e., access structures) are embedded in private keys

 Ciphertext-Policy ABE (CP-ABE) [Bethencourt07]
 Private keys are associated with “attributes”

 Decryption policies (i.e., access structures) are embedded in ciphertexts

19

Types of Attributes in PHR systems

A= {PHR, Examination, Lab test, X-ray images}

Data attributes PHR

Role attributes

20

 Alice

Data Access Privileges /Access Policy

Meta data

Data attributes

PHR, Examination, Lab

test, X-ray image

Role-based access policy

Detailed Record

Health Record Access privileges

Bob

AND

Profession:

Doctor

Specialty:

Gerontology

Carol

Role attributes

OR

medical

history

Personal

info.

OR

medical

history
Lab test

21

What type of users

can access this file?

What type of files

this user can access?

http://images.google.com/imgres?imgurl=http://4.bp.blogspot.com/_GYvJmtdYdok/SWut3KaKOyI/AAAAAAAAAGk/mgfKzWRWKg4/s400/computer-user.jpg&imgrefurl=http://safersrilanka.blogspot.com/2009_01_01_archive.html&usg=__AqFHepxnaK6YpODDnMXduXQUrAs=&h=239&w=239&sz=18&hl=zh-CN&start=3&um=1&itbs=1&tbnid=v06AFaooWejNmM:&tbnh=109&tbnw=109&prev=/images?q=computer+user&um=1&hl=zh-CN&lr=&sa=N&tbs=isch:1

ABE-based Data Access Control

 Fine-grained data access control: access structure can be

any Boolean formula

 Collusion-resistance: a property of ABE

 Scalability: complexity of encryption/decryption linear to

of attributes/access structure size

 Main techniques used:

 ABE (KP-ABE, CP-ABE, MA-ABE)

22

Efficient User Revocation for ABE

 Basic Idea: update a minimal set of attributes to disable the

user’s access structure.

a b

…
user x

AND

AND

Update: a a’

Attribute: a, b, c

Attribute: a’, b, c

data owner needs to

 1) re-encrypt ALL data files that have attribute a.

 2) update ALL private keys of non-revoked users that contain attribute a

24

Overhead Reduction on Owner Side

 Delegate file re-encryption to server

 by proxy re-encryption

Cloud Server Attribute: a, b, c, … Attribute: a’, b, c, …

Update: a a’ re-keyaa’

Ea = gas ga’s= (gas)a’/a

re-keyaa’: a’/a Ciphertext component

Ea’ = ga’s

Cf. [Yu et al. ASIACCS’10]

25

 Delegate user private key update to server

 By proxy re-encryption

re-keyaa’

Cloud Server a b

…

a' b

…

user x user x

SK: <Ska , SKb , …> SK: <Ska’ , SKb , …> SKa’= (SKa)
a’/a

re-keyaa’: a’/a

Overhead Reduction on Owner Side

26

 Computation done by server.

 Lazy re-encryption:

 a user’s private key is only updated at the next login

 a data file is re-encrypted only when it is being accessed.

 Revocation overhead on server is significantly reduced.

Data owner

re-key: data re-encryption,

user private key update

Overhead Reduction on Server Side

27

Overhead Reduction on User Side
 Decryption delegation

 Introduce a DUMMY attribute to enable decryption delegation.

 Cloud servers are able to perform the major part of decryption on behalf of
the user without knowing the data content.

 Computation on user side is constant.

Cloud Server
a b

…

user x

Attribute:

a, b, c, …,

AND

DUMMY

DUMMY

Cf. [Yu et al. INFOCOM’10]

28

Comparison of Security and Functionality

Our scheme [CCSW09] [VLDB07]

Fine-grained access

control

Yes Yes Yes

Privacy guarantee Yes,

Resistant to collusions

Yes

Yes, Not resistant to

user-server collusion

Revocation

granularity

Attribute-level; User-level;

on-demand

N/A ACL;

On-demand

Policy

expressiveness

Arbitrary Boolean formula

(KP-, CP-ABE), and conjunctive

form for MA-ABE

Disjunctive policy ACL

[VLDB07] di’ Vimercati et. al., “Over-encryption: management of access control evolution on

outsourced data,” in VLDB ’07.

[CCSW09] Benaloh et.al., “Patient-controlled encryption: ensuring privacy of electronic

medical records,” in CCSW ’09.

29

Comparison of Complexity

Our Scheme [VLDB07] [CCSW09]

Ciphertext Size O(tc) O(1) O(l)

User Private Key

Size

O(tu)

O(No) O(l*L*No)

Public Key/info. Size O(|UD|+|UR|) O(No*Nu) O(No)

Re-keying messages O(tu) O(Nu) N/A

30

Implementation/Simulation Results

 Implemented KP-ABE on a 3.4GHz PC

Worst case timing results

31

Limitations

33

 confidentiality to cloud data against cloud server

 Cloud data service is merely a storage

 Encryption and decryption has to be done at the user

side.

 Data computation on the server is a challenge

 With secure cloud server, situation may change

 Some computation can be done in the server

 Data at rest still encrypted

 Confidentiality, not integrity yet

Research on Privacy-Assured Data Service

Secure data
storage and

sharing

Public auditing
of outsourced

data

Search over
encrypted

data
……

34

Publicly Auditable Cloud Storage

 Data are outsourced to semi-trusted storage server

 Goal: efficient cloud data integrity verification
 Detect data corrupt or loss, support data dynamics, allow third-party (batch)

verification

 Challenge: NO local copy of outsourced data

Data Flow
Owner

Data
 A

uditin
g

Delegatio
n

Security Message Flow

Public Data Auditing

Third Party Auditor

Cloud Servers

User

Resource

constrained

35

Straightforward Approaches

36

 Apply random-sampling approach for probabilistic data

integrity guarantee

 Only check a small portion of the data each time VS. retrieve all at once.

 Can achieve high probabilistic data integrity guarantee

σ1

m1

σ2

m2

σ3

m3

σ4

m4

…

…

σn

mn

1. linear bandwidth cost (against sample size),

2. verify block/authenticator pair one-by-one.

Server

Owner randomly sample

block/authenticator pairs σ1

m1

σ2

m2

σ4

m4

Owner pre-computes an authenticator

(e.g., signature) for each file block.

σi = MACsk(i||mi)

Probabilistic Guarantee of Random Sampling

37

• Assume r out of n blocks are corrupted, how many blocks should we
randomly sample to detect it with high probability?

• Let X denote the number of corrupted blocks picked by the random-
sampling. Then sampling c blocks gives detection probability

• If t = 1% of file is corrupted, randomly sample a constant of c = 460
blocks to maintain detection probability P = 0.99.

• Error-correcting code can be used to correct small data errors.

One step forward

σ1

m1

σ2

m2

σ3

m3

σ4

m4

…

…

σn

mn

blocks and authenticators are

combined into single value

Server

Auditor
randomly sample

file blocks σ1

m1

σ2

m2

σ4

m4

σ

μ

 General approach is to employ homomorphic authenticator
technique to achieve constant-bandwidth remote data integrity
checking.
 Ateniese et al. CCS 2007

 Shacham et al. Asiacrypt 2008

 Wang et al. ESORICS 2009

 Erway et al. CCS 2009

small and constant bandwidth
only need to

verify μ and σ

Owner pre-computes

an authenticator for

each file block.

38

• Direct extension to data dynamics may have security problems.
– E.g., block modification from mi to mi + Δm allows adversary to obtain Δm

and by dividing newly computed σi’ and original σi

– Adversary could now maliciously modify any block ms to ms* = ms+Δm and forge
legitimate authenticator σs* as:

• New authenticator construction is required to avoid such attack, where
H(name||i) must change for each modification operation.

When extending to data dynamics

m1 F m2 m3
……. mn

σ1 σ3 σ2 σn
…….

H. Shacham et al. 08

BLS signature based

G. Ateniese et al. 07

RSA based

v, name: randomly chosen labels for file names;

d, x: related private keys; H(.), h(.) : hash to point functions.

41

When extending to data dynamics

m1 F m2 m3
……. mn

σ1 σ3 σ2 σn
……. H. Shacham et al. 08

BLS signature based

G. Ateniese et al. 07

RSA based

• A secure authenticator must enforce the block index/sequence
information.

– Prevent adversary from using authenticators to obtain proofs for different blocks.

– E.g., use any valid (ms ,σs) pair to pass challenges for corrupted mt successfully.

• But keeping index information makes data updates highly inefficient.
– E. g., insert a block at any position will affect update (re-computation) on

authenticators for all the following blocks.

• Can we eliminate the index information but still enforce block sequence
without affecting the security?

Eliminating index info …
 Construct authenticators using H(mi) instead of H(name||i).

 New authenticator supports secure block modification operation.

 H(mi) changes for every block updates, so the aforementioned attack

on block modification is no longer valid.

 Elimination of index for efficient block insertion/deletion operation.

 When inserting/deleting a block, authenticators for all other blocks remains

the same, i.e., no authenticator re-computation is required.

We are yet to need a way to enforce the block index sequence.

Enforce order of data blocks …
 Propose a novel sequence-enforced Merkle Hash Tree (sMHT).

 Construct the sMHT with an ordered set {H(mi)}i=1,…,n as the leaf

nodes, and use root R to ensure the block index information:

By following the left-to-right index sequence and the way of computing the tree
root, we can uniquely determine both the value and position of any leaf block(s).

Auxiliary Authentication Information

(AAI)

h(x1) h(x2) h(x3) h(x4)

ha hb

Root Rhr

A B

x1 x2 x3 x4

Sequence of access to the ordered set of leaves

To verify the value and position of x2, we
use tree root R and AAI = {h(x1), hb}:

1. Compute ha = h(h(x1) || h(x2));

2. Verify if R = h(ha || hb).

xi = H(mi), i = 1,…, n

Revisiting Existing Approaches

• μ = v1m1+v5m5+v6m6+v8m8 may leak the data to TPA.

– Direct adoption is unsuitable for public auditing.

• Encrypting data before outsourcing? NOT satisfying.

– Method not self-contained; Leave the problem to key management.

– An overkill for unencrypted data (outsourced libraries, scientific data etc.).

σ1

m1

σ2

m2

σ3

m3

σ4

m4

…

…

σn

mn File

{v1, v5, v6, v8}

 randomly-chosen coefficients
server combines corresponding

blocks and authenticators
TPA

Cloud Server Owner
outsource

σi

μ = v1m1+v5m5+v6m6+v8m8

with gx

46

Privacy-preserving Public Auditing

47

σ1

m1

σ2

m2

σ3

m3

σ4

m4

…

…

σn

mn

{v1, v5, v6, v8}

 randomly-chosen coefficients

server combines corresponding

blocks and randomly masks it.

μ = v1m1+v5m5+v6m6+v8m8

TPA

Cloud Server

• Construct homomorphic aggregation with random masking.

• Achieve privacy-preserving auditing regardless of data encryption.

verify μ and σ

Random masking must not affect storage correctness validation.

With randomly masked μ , owner

data content is no longer exposed!

μ

Privacy-preserving Public Auditing

48

σ1

m1

σ2

m2

σ3

m3

σ4

m4

…

…

σn

mn

{v1, v5, v6, v8}

 randomly-chosen coefficients

μ = v1m1+v5m5+v6m6+v8m8

TPA

Cloud Server

1. Cloud server picks a random r.

2. Computes

3. μ = r + γ μ mod p.

• System Parameters: , .
 , ,

Research on Privacy-Assured Data Service

Secure data
storage and

sharing

Public auditing
of outsourced

data

Search over
encrypted

data
……

55

Privacy-preserving search over encrypted

cloud data

56

Single-owner or multi-owner

multi-user

Index

 Threat Model
 Cloud server: honest-but-curious (honestly follow the protocol but try to learn

private information about user’s data); can collude with some users

 Users: may try to gain unauthorized search access to data; can collude with each
other to derive search access beyond their allowed ones

Privacy Concerns

57

 Data privacy
 Confidentiality of the outsourced data contents

 Index privacy
 Confidentiality of data index (if any)

 Search privacy
 Keyword privacy

 The keyword in user’s query should be hidden

 Trapdoor is essentially an “encrypted” version of keywords

 Search pattern privacy

 A.k.a. trapdoor unlinkability: two queries for the same keyword shall not be linked

 Requires non-deterministic trapdoor construction

 Trapdoor unmalleability
 Should not derive a new trapdoor from existing ones

 Access privacy
 Hides the access pattern (sequence of returned documents)

 All against server

Practical Techniques for Searches on

Encrypted Data

59

D. X. Song, D. Wagner, and A. Perrig [S&P 2000]

 Scenario: single contributor, outsourced documents

 Technique overview: symmetric key, single keyword search

 Non-Index: Perform a sequential scan without an index

 Setup and Notations:

 Document: sequence of fixed length words

 Pseudorandom Generator G and seed:

 S G (seed) , Si Gi (seed)

 Pseudorandom Function F and key K :

 FK maps n-m bits to m bits

 Wi -1

n bits

Wi

n bits

Wi+1

n bits

… …

Si-1

m bits

… … Si

m bits

Si+1

m bits

Practical Techniques for Searches on

Encrypted Data (cont’d)

62

• Pros :

 Provably secure

 Derived from security of pseudorandom function/permutation

 Supporting data dynamics

 A new document can be simply encrypted and appended to the already-stored

ciphertext

 No additional storage

• Cons :

 Deterministic trapdoor

 Inefficient: linear scan over encrypted data

 Support only single fixed-length word search

To do better in efficiency, index-based approach can be adopted!

Index-based Approaches

63

Secure indexes: E-J. Goh [http://eprint.acr.org/2003/216/]

 Index by document vs. index by keyword

 Build secure index for documents

 Generate a sub-index for every document consisting of keywords in it

 Techniques used

 1. Bloom filters – efficient test for set membership

 2. PRF – pseudo-random functions

 3. PRG – pseudo-random generator

Secure index Construction

68

 Keygen(s):

 Given a security parameter s,

 choose a pseudo-random function f : {0, 1}n ×{0, 1}s
 {0, 1}s

and the master key Kpriv = (k1, . . . , kr) R {0, 1}sr.

 Trapdoor(Kpriv,w)

 Given the master key Kpriv = (k1, . . . , kr) {0, 1}sr
 and word w,

output the trapdoor for word w as

 Tw = (f(w, k1) , . . . , f(w, kr)) {0, 1}sr

Secure index Construction (cont’d)

69

 BuildIndex(D,Kpriv):

 a document D comprising of an unique identifier Did {0, 1}n ,

 a list of words (w0, . . . ,wt) {0, 1}nt,

 and Kpriv = (k1, . . . , kr) {0, 1}sr.

 1. For each unique word wi for i [0, t], compute

 (a) the trapdoor: (x1 = f(wi, k1) , . . . , xr = f(wi, kr))

 (b) the codeword for wi in Did:

 (y1 = f(Did, x1) , . . . , yr = f(Did, xr)) {0, 1}sr,

 (c) insert y1, . . . , yr into Did’s Bloom filter (BF)

Non-deterministic “encryption”: same keyword is

mapped to different bits for different documents

Secure index Construction (cont’d)

70

 BuildIndex(D,Kpriv):

 2. Compute an upper bound u on the number of words

in D.

 E.g., extremely assumes one word for every byte in D (after

encryption).

 3. Blind the index by inserting (u−v)r number of 1’s

uniformly at random in BF;

 v is the number of unique words among the set of t words (w0, . . .

,wt).

 4. Output IDid = (Did , BF) as the index for Did.

Blind to make every BF have similar number of 1s.

Secure index Construction (cont’d)

71

 Search(Tw, ID):

 the trapdoor Tw = (x1, . . . , xr) for word w;

 the index IDid = (Did , BF) for document Did.

 1. Compute the codeword for w in Did:

 (y1 = f(Did, x1) , . . . , yr = f(Did, xr)).

 2. Test if BF contains 1’s in all r locations denoted by y1, . . .

, yr.

 3. If so, output 1; Otherwise, output 0.

Secure indexes - Efficiency

72

 Cost of Algorithms

 choosing suitable Bloom filter parameters

 choosing pseudo-random function f

 keyed hash function HMAC-SHA1: {0, 1}* × {0,1}160
 {0,1}160

 handles arbitrary length word

 assuming that computing a pseudo-random function is a

constant time operation, testing/inserting entries into a Bloom

filter are constant time operations

 Trapdoor algorithm takes O(r) time;

 The BuildIndex algorithm on a document takes time linear in

the number of words in the document;

 The SearchIndex algorithm takes O(r) time on a document

Secure indexes – Summary

74

 Pros:

 Support variable-length words

 Search efficiency O(Nr)

 N is the number of files and r is the number of hash functions

 Dynamics: a new BF can be generated and outsourced to

server along with the new document

 Cons:

 Storage: bloom filter introduces large storage for each file.

 Weak search semantics: simple boolean keyword search; very

hard to control the false positive

Searchable Symmetric Encryption

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky [CCS 2006]

• Scenario: single contributor, outsourced documents

• Technique overview: SKC, single keyword search

• Inverted index: an array A and a lookup table T for the whole dataset

 Build a linked list Li for each unique keyword Wi where the elements of

the list are the identifiers of all documents which contains Wi

Austin

Boston

Washington

• BuildIndex: an array A and a lookup table T for the whole dataset

 Create a linked list for each keyword, consisting IDs of all the documents that

contain the keyword.

 The elements in all linked lists are then encrypted and put into the array A in a

mixed order

Austin

Boston

Washington

Array A

78

Searchable Symmetric Encryption (cont’d)

•BuildIndex: an array A and a lookup table T for the whole dataset

 The elements in all linked lists are then encrypted and put into the array A in a

mixed order (P: PRP; F: PRF)

F(Austin) = KA P(Austin) Austin

Boston

Washington

F() = KB

F(Washington) = KW

P(Boston)

P(Washington)

Look-up Table T Array A

Searchable Symmetric Encryption (cont’d)

Search :

Boston

addr := P(Boston)

key := F(Boston)

Trapdoor := (addr, key)

D8,

D10

T A

80

Searchable Symmetric Encryption (cont’d)

Searchable Symmetric Encryption (cont’d)

81

• Pros:

 Privacy: hides everything else except search pattern

(deterministic trapdoor) and access pattern; provably secure

 Search Efficiency: server’s computation overhead is linear with

the number of the documents which contains the querying

keyword

 Storage: better than bloom filter

• Cons:

 Support only single keyword search

 Dynamics: to insert a document, the data owner has to

retrieve the whole index, decrypt it and build a new index.

Public Key Encryption with Keyword Search

82

D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persianoz [EUROCRYPT

2004]

• Scenario: multiple contributors, e.g., email gateway

• Technique overview: PKC, bilinear map, BDH(Bilinear Diffie-Hellman

Problem)

• Index: a list of encrypted keywords appended as an index per document

 Contributor of each document encrypts a set of keywords individually with the

public key

 These encrypted keywords are then appended to the encrypted document

•

(Apub is the public key of the data owner)

),(),...,,(, 1 kpubpubA WAPEKSWAPEKSmsgE
pub

Public Key Encryption with Keyword Search

83

• PEKS Construction

Setup

 two groups of prime order p,

 a bilinear map

 Bilinear property: for any integer ,

 Picking a random and generator g of G1

BuildIndex

 Then for keyword W,

Search

 With trapdoor for W,

 Test every PEKS

1 2,G G

211: GGGe

xyyx ggegge),(),(],1[, pyx
*

pZ

 privpub AghgA and],[

 *

2 1 2(,) [, ()], , for a randomr r

pub pPEKS A W g H t where t e H W h G r Z

 1 1wT H W G

2 2((,)) ()r

wH e T g H t

Index privacy: same keyword

encrypted differently

Public Key Encryption with Keyword Search

84

• Pros:

 Multiple contributors

 Example applications: secure email gateway, e.g., spam filtering

• Cons:

 Search Inefficiency

 Linearly scan the appended encrypted keywords in every document,
and do pairing computation

 keyword privacy cannot be guaranteed (common drawback of
PKC-based SE)

 Dictionary attack: Server encrypts every possible keyword with the
public key, and then do the search with trapdoor. Based on the search
result, server knows the keyword hidden in the trapdoor.

 Ranked retrieval are usually more effective than Boolean search.

 Ranking is not supported in existing searchable encryption techniques

Extending to Ranked Search

Ranking benefits
• Find most/least relevant
information quickly
• Avoids unnecessary
network traffic ……

……

……

90

 Targets at

 Retrieve files in a ranked order (top-k) according to certain relevance criteria.

 Achieved through frequency based statistical measurement from IR

 Ranking relevance : term (keyword) frequency × inverse document frequency.

 For single keyword search: keyword frequency would suffice for ranking.

Ranked Search over Encrypted Data

Large scale system usability
file retrieval accuracy
user searching experience

F1 F2 F3 F4

W1 3 6 0 0

W2 2 0 3 5

W3 5 4 0 1

Frequency table with 4 files

One simple example for TF × IDF
rule:

Score (W1, F1) = [3/(3+2+5)] × log

(4 / 2)

91

 OPSE is a deterministic encryption scheme where the numerical ordering of
the plaintexts gets preserved.

 State-of-the-art studied by Boldyreva et al. in Eurocrypt 2009.

 It’s suggested M = N/2 > 80, then # of M-out-of-N combinations > 280.

 We skipped many details of OPSE security definition.

One Useful Technique:

Order-preserving Symmetric Encryption (OPSE)

Informally, the order-preserving
encryption corresponds to
randomly choosing a
combination of M-out-of-N
ordered items.

1

2

3

…

M-1

M

1

2

3

4

5

…

N-2

N-1

N

……

Domain

Range
order-preserved mapping a

set of numerical plaintexts

92

 Brief overview of OPSE plaintext-to-ciphertext assignment process.

 Plaintext m is first mapped to a non-overlapping interval in range, determined by

encryption key. Ciphertext c is then chosen by using numerical plaintext m as seed.

 We propose to further incorporate the unique file IDs {Fi} together

with the plaintext m’s as the final seed for ciphertext selection.

One-to-many Order-preserving Mapping

1

2

3

…

M-1

M

1

2

3

4

5

…

…

…

N-2

N-1

N

1

2

3

4

5

…

…

…

N-2

N-1

N

random ciphertext

selection via seed “1”

random ciphertext

selection via seed “2”

……
……

random ciphertext

selection via seed “M”

plaintext mapped to random-

sized non-overlapping interval

……
……

Domain

Range

1 is always
mapped to 3

94

Extending to Multiple-Keyword Ranked Search

 Typical user’s search preference

 Data users do multiple-keyword search

 single keyword search often yields far too coarse result

 Returned documents should be sorted by their similarity with query

 Documents with more keywords matches will be given higher rank scores

Challenge: how to realize efficient multi-keyword ranked search over encrypted data?

File 1: A,B, C, D

File 2: A, C

File 3: B, D

Coordinate matching

99

 “Coordinate matching” principle

 as many matches as possible

 Widely used metric in IR – information retrieval

 Coordinate matching in plaintext:

1

1

1

1

…

1

Index vector: p

1

1

1

0

…

0

Query vector: q

A

B

C

D

…

X

Keywords Keywords
A

B

C

…

Dot product
Rank score = 3

Question: how to realize coordinate matching over encrypted data,

without leaking user privacy?

“Inner Product Similarity”

Privacy-Preserving in Known-Ciphertext

Model

Subindex Ii

 BuildIndex (F, SK)

 run by data owner

 F = {F1, F2,…, Fm}

Privacy-Preserving in Known-Ciphertext

Model

Trapdoor

𝑇𝑊

 Trapdoor (𝑊)

 run by data owner or data users

 𝑊 is the query keyword set

Privacy-Preserving in Known-Ciphertext

Model

 Query(𝑇𝑊 , k, I)

 run by cloud server

 compute the inner product (similarity score) as r(Di·Q+εi)+t

 sort all products

 return top-k ranked document id list

Privacy-Preserving in Known-Ciphertext

Model

 Functionality

 ε has a great impact on the search accuracy

 𝜀~N(𝜇, 𝜎2)

 𝜎 influences the order of similarity scores

 Efficiency

 In BuildIndex or Trapdoor, two multiplications of a (n + 2) X (n +

2) matrix and a (n + 2)-dimensional vector are involved to

generate each subindex or trapdoor

 In Query, the final similarity score is computed through two

multiplications of two (n + 2)-dimensional vectors

Similarity-based Multiple keyword ranking

search

Preliminaries

 Similarity evaluation function

 𝐶𝑜𝑠 𝐷𝑑 , 𝑄 =
1

𝑤𝑑𝑤𝑞
 𝑤𝑑,𝑡 ∙ 𝑤𝑞,𝑡𝑡∈𝑄∩𝐷𝑑

 where 𝑤𝑑,𝑡 = 1 + l𝑛 𝑓𝑑,𝑡 , 𝑤𝑞,𝑡 = l𝑛 1 +
𝑁

𝑓𝑡
, 𝑤𝑑 =

(𝑤
2

𝑑,𝑡
𝑡𝑛
𝑡=𝑡1

)
1 2
, 𝑤𝑞 = (𝑤

2
𝑞,𝑡

𝑡𝑛
𝑡=𝑡1

)
1 2

 𝐷𝑑 = (𝑤𝑑,𝑡1 , 𝑤𝑑,𝑡2 , … , 𝑤𝑑,𝑡𝑛)/𝑤𝑑

 𝑄 = (𝑤𝑞,𝑡1 , 𝑤𝑞,𝑡2 , … , 𝑤𝑞,𝑡𝑛)/𝑤𝑞

 0 ≤ 𝐶𝑜𝑠 𝐷𝑑 , 𝑄 < 1

Secure Index Scheme

 GenIndex

Normalized 𝑤𝑑,𝑡

...

𝐷𝑑,𝑖

𝑆𝑖

𝐷𝑑,𝑖
′

𝐷𝑑,𝑖
′′

Vector splitting

𝑀1,𝑖

𝑀2,𝑖

𝑀1,𝑖
𝑇 𝐷𝑑,𝑖

′

𝑀2,𝑖
𝑇 𝐷𝑑,𝑖

′′

𝐷𝑑,𝑖 |𝑇𝑖|-dimension

Secure Index Scheme

 GenQuery

Normalized 𝑤𝑞,𝑡

...

𝑄𝑖

𝑆𝑖

𝑄𝑖
′

𝑄𝑖
′′

Vector splitting

𝑀1,𝑖

𝑀2,𝑖

𝑀1,𝑖
−1𝑄𝑖

′

𝑀2,𝑖
−1𝑄𝑖

′′

𝑄𝑖 |𝑇𝑖|-dimension

Secure Index Scheme

 SimEvaluation:

 𝑐𝑜𝑠𝑖𝑛𝑒 𝐷𝑑,𝑖 ,𝑄𝑖

= 𝑀1,𝑖
𝑇 𝐷𝑑,𝑖

′, 𝑀2,𝑖
𝑇 𝐷𝑑,𝑖

′′
∙ {𝑀1,𝑖

−1𝑄𝑖
′, 𝑀2,𝑖

−1𝑄𝑖
′′} = 𝐷𝑑,𝑖 ∙ 𝑄𝑖

 The final similarity score for document d is:

 𝐷𝑑,𝑖 ∙ 𝑄𝑖 = 𝐷𝑑 ∙ 𝑄
ℎ
𝑖=1

21 2.5

25 2.4

22 2.3

25 2.4

22 2.3

20 2.3

25 2.4

22 2.3

10 2.2

22 2.3

10 2.2

13 2.2

0.6 0.5 0.2

0.6

1.0

Multi-dimensional Algorithm Based Search

 Searching the best 3 objects

0.8 1.0 1.0

0.8 0.6

0.5 0.9 0.1 0.5 0.7 1.0 0.8 1.0 0.7

20

11

21

16

13 18 24 1

5 6

17 7 22 25

2

23 15 14 12 10

3

9

8

4

0.4 0.2 0.4 0.6 0.3 0.9 1.0 0.5 0.1

0

0.3

19

0.0

0.0

S1

S2

S3 S4 S5

S6

S7

S8

S9 S10

1.0

B(S2)=1.0+1+1= 3.0

0.6

B(S3)=1.0+0.6+1= 2.6

0.6

B(S)=1.0+0.6+0.6= 2.2

object rating

1st

2nd

3rd

10

2.2

0.5

B(S)=1.0+0.6+0.5= 2.1

4

2.1

8

2.1

0.2

B(S)=1.0+0.6+0.2= 1.8 1.8

TK

0.4

B(S4)=1.0+0.4+1= 2.4

>

0.9

B(S)=1.0+0.4+0.9= 2.3

22

2.3

0.5

2.3

1.9

0.3

0.2

2.2

1.0

2.2

0.8

2.8

0.6

2.4

1.0

2.4

0.8

2.2

0.4

2.2

0.6

2.6

1.0

2.6

0.7

2.3

0.5

2.1

0.9

2.5

1.0

2.5

0.8

2.3

0.5

2.1

Performance analysis

 Search efficiency

Extending to Fuzzy Search

124

 Single keyword fuzzy search

 Multiple keyword fuzzy search

Thank You !

Acknowledgement of the

Funding Agency: NSF

126

