
Towards a Data-centric Approach

to Attribution in the Cloud

Wenchao Zhou
Georgetown University

In collaboration with Boon Thau Loo, Andreas Haeberlen, Zachary Ives
(Penn), and Micah Sherr (Georgetown)

Introduction

 Success of Cloud
 Economics of outsourcing data, computing and management
 Virtualization of resources (storage, computing, networking)
 Continued migration of applications to the cloud

 Amazon EC2, Salesforce, Office 365, iCloud, etc
 Middleware and firewalls in enterprise networks [SIGCOMM 12]
 Interdomain routing [HotNets 12]

 Increasing interaction between applications/clients

2

Motivation

 Call for Attribution
 Needed in tasks with collective efforts
Who is responsible for unexpected symptoms?

 Attacks, bugs, client-side misbehavior
 Evidences for accountability

3

A Simple Example

 A simple task that requires collective effort: routing
 System administrator observes strange behavior
 Example: the route to foo.com has suddenly changed

4

Why did my route to
foo.com change?!

Alice
foo.com

Route r1

Route r2

Malicious Attack?

A

D E

B C
Software Bugs?

An Ideal Solution

5

The Cloud

A: Because Route r1 disappeared as
B considers the channel between B

and C is down.

Alice

Route r2

A

D E

B C

 What does attribution look like?

Why did my route to
foo.com change?!

Q: Explain why the
route to foo.com

changed to r2.

Route r1

foo.com

A Data-centric Perspective

 We assume a general distributed system
 A network consisting of nodes (e.g., VMs)
 The state of a node is a set of tuples (routes, config, ...)
 Idea: Attribution as reasoning of state dependencies

 Base tuples: boundary of the reasoning, considered as facts 6

Alice

foo.com

route(C, foo.com)

link(C, foo.com)

route(A, B) A

B C

D E

……
route(B, foo.com)

link(B, C)

route(A, foo.com)

link(A, B) route(A, D) link(A, B)

link(A, D)

Provenance for Attribution

 Provenance for encoding state dependencies
 Explains the derivation of tuples
 Captures the dependencies between tuples as a graph
 Attribution of a tuple is a tree rooted at the tuple

 Route r1 disappeared as B removes the link between B and C 7

Alice

foo.com

route(C, foo.com)

link(C, foo.com)

A

B C

D E

route(B, foo.com)

link(B, C)

route(A, foo.com)

link(A, B)

route(D, foo.com)

link(D, E)

route(E, foo.com)

link(E, B)

Challenges

 Historical information about distributed state

8

Alice
foo.com

Route r2

Route r1

Challenges

 Historical information about distributed state
 Correct and complete provenance in transient state

9

Alice
foo.com

Route r1

Challenges

 Historical information about distributed state
 Correct and complete provenance in transient state
 Distributed maintenance – performance tradeoffs

10

Alice
foo.com

Route r1

Challenges

 Historical information about distributed state
 Correct and complete provenance in transient state
 Distributed maintenance – performance tradeoffs
 Security guarantee in an untrusted environment

11

Alice
foo.com

Route r1

Related Work

12

 Provenance for distributed settings
 Cloud systems: PA-S3fs [MMS 10], RAMP [IPW 11]
 Collaborative data sharing systems: Orchestra [GIK+ 07]

 Provenance for historical system state
 PASS [MHB+ 06]
 workflow systems (Kepler [ABJ 06], VisTrails [CFS+ 06], etc)

 Provenance security
 Sprov [HSW 09], Pedigree [RBT+ 08]

Challenges

 Provenance model (distribution + time)
 Storage and maintenance at large scale
 Distributed provenance querying
 Security guarantees in adversarial environment

Application

Store

Provenance
Maintenance

Provenance
Querying

Primary system Provenance system

Network

Users Operator

Extractor

13

Outline

 Introduction
Motivation: Explain general system anomalies
 Approach: Secure Time-aware Provenance

 Provenance Model [SIGMOD 10, VLDB 13]

 Provenance Maintenance and Querying
 Securing Network Provenance
 Conclusion

14

State Transition Systems – State

 Node’s state captured as tuples
 Message captured as a triplet (src, dest, +/-tuple)
 System state S = (H,M), where H is a set of per-node

state, and M is the channel state
15

link
Src Dest Cost
A B 3
A C 5

pathCost
Src Dest Cost
A B 3
A C 5
… … …

Transition Logic as Derivation Rules

 State transition in general distributed systems
 E.g. state machine or event-driven model
 Idea: New state as derivation result of old states

 Derivation rules: abstract dependency logic
 Example:

 Rule head is derived, if all the predicates in rule body hold
Written as Network Datalog (NDlog) rules [LCG+ 06]

mm nnnn @......@@:@ 2211 ττττ ∧∧∧−
Rule head Rule body

16

Extracting Dependency Logic

 Option 1: Inferred provenance
 Declarative specifications explicitly capture provenance
 E.g. Declarative networking, SQL queries, etc.

 Option 2: Disclosed provenance
Modified source code reports provenance

 Option 3: Observed provenance
 Defined on observed I/Os of a black-box system

17

Declarative Chord DHT

Hadoop MapReduce

Quagga Software Router

Example: Pairwise Minimal Cost

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),
 minCost(@S,D,C2).

sp1: pathCost(@S,D,C) :- link(@S,D,C).

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C”

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

18

Example: Pairwise Minimal Cost

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),
 minCost(@S,D,C2).

sp1: pathCost(@S,D,C) :- link(@S,D,C).

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C”

pathCost(@Src,Dst,C) – “a path from node Src to Dst with cost C”

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

19

Example: Pairwise Minimal Cost

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),
 minCost(@S,D,C2).

sp1: pathCost(@S,D,C) :- link(@S,D,C).

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C”

pathCost(@Src,Dst,C) – “a path from node Src to Dst with cost C”

minCost(@Src,Dst,C) – “best path from node Src to Dst with minimal cost C”

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

 One-hop paths

 Aggregation for min cost

 Multi-hop paths

20

Execution Model

sp2a: ΔpathCost(@Z,D,C1+C2) :- Δlink(@S,Z,C1), minCost(@S,D,C2).
sp2b: ΔpathCost(@Z,D,C1+C2) :- link(@S,Z,C1), ΔminCost(@S,D,C2).

21

 Pipeline Semi-naïve evaluation [LCG+ 06]

 Rewrite into event-condition-action rules
 Consume updates, and generate new updates

+pathCost(a,c,4) +link(b,a,1) +link(b,c,3)

mincost(b,c,3)

Execution Traces

22

a b

c

at time t1
a b

c

(b,a,1)

at time t2
a b

c

at time t0

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),
 minCost(@S,D,C2).

sp1: pathCost(@S,D,C) :- link(@S,D,C).

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

sp1
+pathCost(b,c,3)

sp3
+minCost(b,c,3)

a

b

c

sp2

sp3
+minCost(a,c,4)

-minCost(a,c,5)

t0@b t2@b t3@a

 Execution trace as an ordered sequences of events
 Encode the execution of a state transition system

Provenance Model

Constraints

Rule triggering

23

a b

c

at time t1
a b

c

at time t2

(b,a,1)

INSERT(t2, b, link(@b,a,1)) EXIST(t2, b, minCost(@b,c,3))

DERIVE(t2, b, pathCost(@a,c,4), sp2@b)

INSERT(t3, a, pathCost(@a,c,4))

DERIVE(t3, a, minCost(@a,c,4), sp3@a)

INSERT(t3, a, minCost(@a,c,4))

DELETE(t3, a, minCost(@a,c,5))

……
INSERT(t0, b, minCost(@b,c,3))

Snapshot

 INSERT/DELETE: Tuple τ was inserted
(deleted) on node n at time t

 DERIVE/UNDERIVE: Tuple τ was derived
(underived) via rule R on node n at time t

 SEND/RECV: Update +/- τ was sent (received)
by node n at time t

pathCost(@a,c,4)

RECV(t3, a, pathCost(@a,c,4), b, t2)

SEND(t2, b, pathCost(@a,c,4), a)

Communication

Correctness

 Provenance should be “consistent” with the trace
 Both are artifact from a system execution
 Idea: Extract a subtrace from provenance graph

 Extracting subtrace using topological sort
 Edges in provenance graph represents dependencies

 Question: how do we define “consistency”

24

Provenance Properties

 Provenance is valid
 The extracted subtrace should be a viable trace

 Provenance is sound
 The extracted subtrace has same event orders as actual trace
 Problem: order of concurrent events (no synchronized clocks)
 Idea: per-node perspective (indistinguishable executions)

 Provenance is complete
 Provenance includes complete explanation of state (changes)
 Idea: state (changes) are reproducible based on provenance

 Provenance is minimal
 Provenance is exactly the explanation and nothing more 25

Outline

 Introduction
Motivation: Explain general system anomalies
 Approach: Secure Time-aware Provenance

 Provenance Model
 Maintenance and Querying [VLDB 13]

 Securing Provenance
 Conclusion

26

Provenance Maintenance [SIGMOD 10]

 Provenance as views of network state [GIK+ 07]
Maintain in relational tables (prov, ruleExec, send, recv)
 Incremental view maintenance
 Pipelined Semi-Naïve (PSN) [LCG+ 06] evaluation

 Automatic rewrite of derivation rules
 Additionally maintain provenance data
 Does NOT affect the scalability of the base protocol

NDlog rule
NDlog rule +
provenance

maintenance rules

Automatic
Rewrite

Execution

prov ruleExec

…

27

Recursive Provenance Querying

28
provQuery(@N,VID,Time) prov(@N,VID,Time,RID,RTime,RLoc)

prov.VID = provQuery.VID

execQuery(@Rloc,RID,Time) ruleExec(@Rloc,RID,Rule,Time,CList,Trigger)

execQuery.RID = ruleExec.RID

project (execQuery.Rloc,
ruleExec.Trigger/CList,execQuery.Time)
as provQuery(@N,VID,Time)

project (prov.Rloc, prov.RID, prov.RTime)
as execQuery(@Rloc,RID,Time)

 Traversal of the provenance graph
 Step 1: Retrieve rule execution instances
 Step 2: Expand dependent derivations

Recursive Provenance Querying

29

 Traversal of the provenance graph
 Step 1: Retrieve rule execution instances
 Step 2: Expand dependent derivations

 Generic framework for provenance querying
 Formulated in declarative networking engine
 Allows customization (annotation defined in provenance

semiring [GKT 07]) and optimization (caching, etc)

Performance Tradeoffs

 Proactive maintenance
 Provenance deltas – deltas between adjacent versions
 Incrementally applied in querying

 Reactive maintenance
 Idea: sufficient data for reconstructing provenance
 Input logs – communications and update of base tuples
 Reconstruct provenance by deterministic replay
 Long-running systems? Periodic snapshots

 Analogous to log-structured versioning systems

M
ai

nt
en

an
ce

 v
s.

 Q
ue

ry
in

g
pe

rf
or

m
an

ce

30

Outline

 Introduction
Motivation: Explain general system anomalies
 Approach: Secure Network Provenance

 Provenance Model
 Provenance Maintenance and Querying
 Securing Network Provenance [SOSP 11]
 Conclusions

31

Challenge: Adversaries Can Lie

32

The Network

Q: Explain why the
route to foo.com

changed to r2.

Alice
foo.com

Route r2

A

D E

B C

 Problem: adversary can …
 ... fabricate plausible (yet incorrect) response
 … point accusation towards innocent nodes

Everything is fine. Router
E advertised a new route.

I should cover up
the intrusion.

Threat Model

 Existing work
 Trusted kernel, monitor, or hardware

 E.g. Backtracker [OSDI 06], ReVirt [OSDI 02], A2M [SOSP 07]

 These components may have bugs or be compromised
 Alternatives that do have require such trust?

 No trusted components
 Adversary has full control over an arbitrary subset of the

network (Byzantine faults).
 E.g. Compromised nodes can tamper, drop, or replay information

 Pessimistic threat model gives strong guarantees

33

Ideal Guarantees

 Ideally: explanation is always complete and accurate
 Fundamental limitations

 E.g. Faulty nodes secretly exchange messages
 E.g. Faulty nodes communicate outside the system

 What guarantees can we provide?

34

Realistic Guarantees [SOSP 11]

 No faults: Explanation is complete and accurate
 Byzantine fault: Explanation identifies at least one faulty node

35

The Network

Q: Why did my route to
foo.com change to r2?

A: Because someone accessed
Router D and changed its router

configuration from X to Y.

Alice
foo.com

Route r2

A

D E

B C

Aha, at least I know which
node is compromised.

Securing Cross-Node Edges

 Idea 1: Each node keeps vertices about local actions
 TAP model cleanly partition the provenance graph

 Idea 2: Make the graph tamper-evident
 Secure cross-node edges (evidence of omissions)

36

RECV SEND

SEND RECEIVE

Signed
commitment
from B

Signed
ACK
from A

Router A Router B

Secure Provenance Maintenance

 Tamper-evident logs [HKD 07]
 Linear append-only list of events
 Recursively-defined hash chain
 Include top-level hash in messages
 Any tampering breaks the chain!

37

Alice
foo.com

A

B C

D
E

……
SEND
RCV-ACK

……
RECV
ACK

h14

h15

h16

h17

SeqNo, SEND

SeqNo, INS

SeqNo, ACK

SeqNo, RECV ……

Secure Provenance Querying

 Recursively construct the provenance graph
 Retrieve secure logs from remote nodes
 Check for tampering, omission, and equivocation
 Replay the log to regenerate the provenance graph

38

Alice
foo.com

A

B C

D
E

route(A, foo.com)

link(A, B)
Explain the route

from A to foo.com.

RECV (from B)

Secure Provenance Querying

 Recursively construct the provenance graph
 Retrieve secure logs from remote nodes
 Check for tampering, omission, and equivocation
 Replay the log to regenerate the provenance graph

39

Alice
foo.com

A

B C

D
E

route(B, foo.com)

link(B, C)

route(A, foo.com)

link(A, B)
RECV (from C)

Secure Provenance Querying

 Recursively construct the provenance graph
 Retrieve secure logs from remote nodes
 Check for tampering, omission, and equivocation
 Replay the log to regenerate the provenance graph

40

Alice
foo.com

route(C, foo.com)

link(C, foo.com)

A

B C

D
E

link(B, C)

route(A, foo.com)

link(A, B) route(B, foo.com)
OK. Now I know
how the route
was derived.

NetTrails [SIGMOD-demo 11]

 Based on the RapidNet declarative networking engine
http://netdb.cis.upenn.edu/rapidnet/

 System available for download.

41

Outline

 Introduction
Motivation: Explain general system anomalies
 Approach: Secure Network Provenance

 Provenance Model
 Provenance Maintenance and Querying
 Securing Network Provenance
 Conclusions

42

Ongoing and Future Directions

43

 Privacy concerns of provenance
 Tension between attribution and privacy
 Results in Interdomain routing [HotNets 11, SIGCOMM 12]

 Better use of provenance data
 Provenance-based recovery and damage assessment
 Feedback for invariant refinement. Deduce invariants

(desired properties) by mining reported provenance.

Answer why-not questions

Project website: http://snp.cis.upenn.edu/

	Towards a Data-centric Approach to Attribution in the Cloud
	Introduction
	Motivation
	A Simple Example
	An Ideal Solution
	A Data-centric Perspective
	Provenance for Attribution
	Challenges
	Challenges
	Challenges
	Challenges
	Related Work
	Challenges
	Outline
	State Transition Systems – State
	Transition Logic as Derivation Rules
	Extracting Dependency Logic
	Example: Pairwise Minimal Cost
	Example: Pairwise Minimal Cost
	Example: Pairwise Minimal Cost
	Execution Model
	Execution Traces
	Provenance Model
	Correctness
	Provenance Properties
	Outline
	Provenance Maintenance [SIGMOD 10]
	Recursive Provenance Querying
	Recursive Provenance Querying
	Performance Tradeoffs
	Outline
	Challenge: Adversaries Can Lie
	Threat Model
	Ideal Guarantees
	Realistic Guarantees [SOSP 11]
	Securing Cross-Node Edges
	Secure Provenance Maintenance
	Secure Provenance Querying
	Secure Provenance Querying
	Secure Provenance Querying
	NetTrails [SIGMOD-demo 11]
	Outline
	Ongoing and Future Directions

