
Towards a Data-centric Approach

to Attribution in the Cloud

Wenchao Zhou
Georgetown University

In collaboration with Boon Thau Loo, Andreas Haeberlen, Zachary Ives
(Penn), and Micah Sherr (Georgetown)

Introduction

 Success of Cloud
 Economics of outsourcing data, computing and management
 Virtualization of resources (storage, computing, networking)
 Continued migration of applications to the cloud

 Amazon EC2, Salesforce, Office 365, iCloud, etc
 Middleware and firewalls in enterprise networks [SIGCOMM 12]
 Interdomain routing [HotNets 12]

 Increasing interaction between applications/clients

2

Motivation

 Call for Attribution
 Needed in tasks with collective efforts
Who is responsible for unexpected symptoms?

 Attacks, bugs, client-side misbehavior
 Evidences for accountability

3

A Simple Example

 A simple task that requires collective effort: routing
 System administrator observes strange behavior
 Example: the route to foo.com has suddenly changed

4

Why did my route to
foo.com change?!

Alice
foo.com

Route r1

Route r2

Malicious Attack?

A

D E

B C
Software Bugs?

An Ideal Solution

5

The Cloud

A: Because Route r1 disappeared as
B considers the channel between B

and C is down.

Alice

Route r2

A

D E

B C

 What does attribution look like?

Why did my route to
foo.com change?!

Q: Explain why the
route to foo.com

changed to r2.

Route r1

foo.com

A Data-centric Perspective

 We assume a general distributed system
 A network consisting of nodes (e.g., VMs)
 The state of a node is a set of tuples (routes, config, ...)
 Idea: Attribution as reasoning of state dependencies

 Base tuples: boundary of the reasoning, considered as facts 6

Alice

foo.com

route(C, foo.com)

link(C, foo.com)

route(A, B) A

B C

D E

……
route(B, foo.com)

link(B, C)

route(A, foo.com)

link(A, B) route(A, D) link(A, B)

link(A, D)

Provenance for Attribution

 Provenance for encoding state dependencies
 Explains the derivation of tuples
 Captures the dependencies between tuples as a graph
 Attribution of a tuple is a tree rooted at the tuple

 Route r1 disappeared as B removes the link between B and C 7

Alice

foo.com

route(C, foo.com)

link(C, foo.com)

A

B C

D E

route(B, foo.com)

link(B, C)

route(A, foo.com)

link(A, B)

route(D, foo.com)

link(D, E)

route(E, foo.com)

link(E, B)

Challenges

 Historical information about distributed state

8

Alice
foo.com

Route r2

Route r1

Challenges

 Historical information about distributed state
 Correct and complete provenance in transient state

9

Alice
foo.com

Route r1

Challenges

 Historical information about distributed state
 Correct and complete provenance in transient state
 Distributed maintenance – performance tradeoffs

10

Alice
foo.com

Route r1

Challenges

 Historical information about distributed state
 Correct and complete provenance in transient state
 Distributed maintenance – performance tradeoffs
 Security guarantee in an untrusted environment

11

Alice
foo.com

Route r1

Related Work

12

 Provenance for distributed settings
 Cloud systems: PA-S3fs [MMS 10], RAMP [IPW 11]
 Collaborative data sharing systems: Orchestra [GIK+ 07]

 Provenance for historical system state
 PASS [MHB+ 06]
 workflow systems (Kepler [ABJ 06], VisTrails [CFS+ 06], etc)

 Provenance security
 Sprov [HSW 09], Pedigree [RBT+ 08]

Challenges

 Provenance model (distribution + time)
 Storage and maintenance at large scale
 Distributed provenance querying
 Security guarantees in adversarial environment

Application

Store

Provenance
Maintenance

Provenance
Querying

Primary system Provenance system

Network

Users Operator

Extractor

13

Outline

 Introduction
Motivation: Explain general system anomalies
 Approach: Secure Time-aware Provenance

 Provenance Model [SIGMOD 10, VLDB 13]

 Provenance Maintenance and Querying
 Securing Network Provenance
 Conclusion

14

State Transition Systems – State

 Node’s state captured as tuples
 Message captured as a triplet (src, dest, +/-tuple)
 System state S = (H,M), where H is a set of per-node

state, and M is the channel state
15

link
Src Dest Cost
A B 3
A C 5

pathCost
Src Dest Cost
A B 3
A C 5
… … …

Transition Logic as Derivation Rules

 State transition in general distributed systems
 E.g. state machine or event-driven model
 Idea: New state as derivation result of old states

 Derivation rules: abstract dependency logic
 Example:

 Rule head is derived, if all the predicates in rule body hold
Written as Network Datalog (NDlog) rules [LCG+ 06]

mm nnnn @......@@:@ 2211 ττττ ∧∧∧−
Rule head Rule body

16

Extracting Dependency Logic

 Option 1: Inferred provenance
 Declarative specifications explicitly capture provenance
 E.g. Declarative networking, SQL queries, etc.

 Option 2: Disclosed provenance
Modified source code reports provenance

 Option 3: Observed provenance
 Defined on observed I/Os of a black-box system

17

Declarative Chord DHT

Hadoop MapReduce

Quagga Software Router

Example: Pairwise Minimal Cost

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),
 minCost(@S,D,C2).

sp1: pathCost(@S,D,C) :- link(@S,D,C).

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C”

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

18

Example: Pairwise Minimal Cost

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),
 minCost(@S,D,C2).

sp1: pathCost(@S,D,C) :- link(@S,D,C).

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C”

pathCost(@Src,Dst,C) – “a path from node Src to Dst with cost C”

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

19

Example: Pairwise Minimal Cost

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),
 minCost(@S,D,C2).

sp1: pathCost(@S,D,C) :- link(@S,D,C).

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C”

pathCost(@Src,Dst,C) – “a path from node Src to Dst with cost C”

minCost(@Src,Dst,C) – “best path from node Src to Dst with minimal cost C”

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

 One-hop paths

 Aggregation for min cost

 Multi-hop paths

20

Execution Model

sp2a: ΔpathCost(@Z,D,C1+C2) :- Δlink(@S,Z,C1), minCost(@S,D,C2).
sp2b: ΔpathCost(@Z,D,C1+C2) :- link(@S,Z,C1), ΔminCost(@S,D,C2).

21

 Pipeline Semi-naïve evaluation [LCG+ 06]

 Rewrite into event-condition-action rules
 Consume updates, and generate new updates

+pathCost(a,c,4) +link(b,a,1) +link(b,c,3)

mincost(b,c,3)

Execution Traces

22

a b

c

at time t1
a b

c

(b,a,1)

at time t2
a b

c

at time t0

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),
 minCost(@S,D,C2).

sp1: pathCost(@S,D,C) :- link(@S,D,C).

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C).

sp1
+pathCost(b,c,3)

sp3
+minCost(b,c,3)

a

b

c

sp2

sp3
+minCost(a,c,4)

-minCost(a,c,5)

t0@b t2@b t3@a

 Execution trace as an ordered sequences of events
 Encode the execution of a state transition system

Provenance Model

Constraints

Rule triggering

23

a b

c

at time t1
a b

c

at time t2

(b,a,1)

INSERT(t2, b, link(@b,a,1)) EXIST(t2, b, minCost(@b,c,3))

DERIVE(t2, b, pathCost(@a,c,4), sp2@b)

INSERT(t3, a, pathCost(@a,c,4))

DERIVE(t3, a, minCost(@a,c,4), sp3@a)

INSERT(t3, a, minCost(@a,c,4))

DELETE(t3, a, minCost(@a,c,5))

……
INSERT(t0, b, minCost(@b,c,3))

Snapshot

 INSERT/DELETE: Tuple τ was inserted
(deleted) on node n at time t

 DERIVE/UNDERIVE: Tuple τ was derived
(underived) via rule R on node n at time t

 SEND/RECV: Update +/- τ was sent (received)
by node n at time t

pathCost(@a,c,4)

RECV(t3, a, pathCost(@a,c,4), b, t2)

SEND(t2, b, pathCost(@a,c,4), a)

Communication

Correctness

 Provenance should be “consistent” with the trace
 Both are artifact from a system execution
 Idea: Extract a subtrace from provenance graph

 Extracting subtrace using topological sort
 Edges in provenance graph represents dependencies

 Question: how do we define “consistency”

24

Provenance Properties

 Provenance is valid
 The extracted subtrace should be a viable trace

 Provenance is sound
 The extracted subtrace has same event orders as actual trace
 Problem: order of concurrent events (no synchronized clocks)
 Idea: per-node perspective (indistinguishable executions)

 Provenance is complete
 Provenance includes complete explanation of state (changes)
 Idea: state (changes) are reproducible based on provenance

 Provenance is minimal
 Provenance is exactly the explanation and nothing more 25

Outline

 Introduction
Motivation: Explain general system anomalies
 Approach: Secure Time-aware Provenance

 Provenance Model
 Maintenance and Querying [VLDB 13]

 Securing Provenance
 Conclusion

26

Provenance Maintenance [SIGMOD 10]

 Provenance as views of network state [GIK+ 07]
Maintain in relational tables (prov, ruleExec, send, recv)
 Incremental view maintenance
 Pipelined Semi-Naïve (PSN) [LCG+ 06] evaluation

 Automatic rewrite of derivation rules
 Additionally maintain provenance data
 Does NOT affect the scalability of the base protocol

NDlog rule
NDlog rule +
provenance

maintenance rules

Automatic
Rewrite

Execution

prov ruleExec

…

27

Recursive Provenance Querying

28
provQuery(@N,VID,Time) prov(@N,VID,Time,RID,RTime,RLoc)

prov.VID = provQuery.VID

execQuery(@Rloc,RID,Time) ruleExec(@Rloc,RID,Rule,Time,CList,Trigger)

execQuery.RID = ruleExec.RID

project (execQuery.Rloc,
ruleExec.Trigger/CList,execQuery.Time)
as provQuery(@N,VID,Time)

project (prov.Rloc, prov.RID, prov.RTime)
as execQuery(@Rloc,RID,Time)

 Traversal of the provenance graph
 Step 1: Retrieve rule execution instances
 Step 2: Expand dependent derivations

Recursive Provenance Querying

29

 Traversal of the provenance graph
 Step 1: Retrieve rule execution instances
 Step 2: Expand dependent derivations

 Generic framework for provenance querying
 Formulated in declarative networking engine
 Allows customization (annotation defined in provenance

semiring [GKT 07]) and optimization (caching, etc)

Performance Tradeoffs

 Proactive maintenance
 Provenance deltas – deltas between adjacent versions
 Incrementally applied in querying

 Reactive maintenance
 Idea: sufficient data for reconstructing provenance
 Input logs – communications and update of base tuples
 Reconstruct provenance by deterministic replay
 Long-running systems? Periodic snapshots

 Analogous to log-structured versioning systems

M
ai

nt
en

an
ce

 v
s.

 Q
ue

ry
in

g
pe

rf
or

m
an

ce

30

Outline

 Introduction
Motivation: Explain general system anomalies
 Approach: Secure Network Provenance

 Provenance Model
 Provenance Maintenance and Querying
 Securing Network Provenance [SOSP 11]
 Conclusions

31

Challenge: Adversaries Can Lie

32

The Network

Q: Explain why the
route to foo.com

changed to r2.

Alice
foo.com

Route r2

A

D E

B C

 Problem: adversary can …
 ... fabricate plausible (yet incorrect) response
 … point accusation towards innocent nodes

Everything is fine. Router
E advertised a new route.

I should cover up
the intrusion.

Threat Model

 Existing work
 Trusted kernel, monitor, or hardware

 E.g. Backtracker [OSDI 06], ReVirt [OSDI 02], A2M [SOSP 07]

 These components may have bugs or be compromised
 Alternatives that do have require such trust?

 No trusted components
 Adversary has full control over an arbitrary subset of the

network (Byzantine faults).
 E.g. Compromised nodes can tamper, drop, or replay information

 Pessimistic threat model gives strong guarantees

33

Ideal Guarantees

 Ideally: explanation is always complete and accurate
 Fundamental limitations

 E.g. Faulty nodes secretly exchange messages
 E.g. Faulty nodes communicate outside the system

 What guarantees can we provide?

34

Realistic Guarantees [SOSP 11]

 No faults: Explanation is complete and accurate
 Byzantine fault: Explanation identifies at least one faulty node

35

The Network

Q: Why did my route to
foo.com change to r2?

A: Because someone accessed
Router D and changed its router

configuration from X to Y.

Alice
foo.com

Route r2

A

D E

B C

Aha, at least I know which
node is compromised.

Securing Cross-Node Edges

 Idea 1: Each node keeps vertices about local actions
 TAP model cleanly partition the provenance graph

 Idea 2: Make the graph tamper-evident
 Secure cross-node edges (evidence of omissions)

36

RECV SEND

SEND RECEIVE

Signed
commitment
from B

Signed
ACK
from A

Router A Router B

Secure Provenance Maintenance

 Tamper-evident logs [HKD 07]
 Linear append-only list of events
 Recursively-defined hash chain
 Include top-level hash in messages
 Any tampering breaks the chain!

37

Alice
foo.com

A

B C

D
E

……
SEND
RCV-ACK

……
RECV
ACK

h14

h15

h16

h17

SeqNo, SEND

SeqNo, INS

SeqNo, ACK

SeqNo, RECV ……

Secure Provenance Querying

 Recursively construct the provenance graph
 Retrieve secure logs from remote nodes
 Check for tampering, omission, and equivocation
 Replay the log to regenerate the provenance graph

38

Alice
foo.com

A

B C

D
E

route(A, foo.com)

link(A, B)
Explain the route

from A to foo.com.

RECV (from B)

Secure Provenance Querying

 Recursively construct the provenance graph
 Retrieve secure logs from remote nodes
 Check for tampering, omission, and equivocation
 Replay the log to regenerate the provenance graph

39

Alice
foo.com

A

B C

D
E

route(B, foo.com)

link(B, C)

route(A, foo.com)

link(A, B)
RECV (from C)

Secure Provenance Querying

 Recursively construct the provenance graph
 Retrieve secure logs from remote nodes
 Check for tampering, omission, and equivocation
 Replay the log to regenerate the provenance graph

40

Alice
foo.com

route(C, foo.com)

link(C, foo.com)

A

B C

D
E

link(B, C)

route(A, foo.com)

link(A, B) route(B, foo.com)
OK. Now I know
how the route
was derived.

NetTrails [SIGMOD-demo 11]

 Based on the RapidNet declarative networking engine
http://netdb.cis.upenn.edu/rapidnet/

 System available for download.

41

Outline

 Introduction
Motivation: Explain general system anomalies
 Approach: Secure Network Provenance

 Provenance Model
 Provenance Maintenance and Querying
 Securing Network Provenance
 Conclusions

42

Ongoing and Future Directions

43

 Privacy concerns of provenance
 Tension between attribution and privacy
 Results in Interdomain routing [HotNets 11, SIGCOMM 12]

 Better use of provenance data
 Provenance-based recovery and damage assessment
 Feedback for invariant refinement. Deduce invariants

(desired properties) by mining reported provenance.

Answer why-not questions

Project website: http://snp.cis.upenn.edu/

	Towards a Data-centric Approach to Attribution in the Cloud
	Introduction
	Motivation
	A Simple Example
	An Ideal Solution
	A Data-centric Perspective
	Provenance for Attribution
	Challenges
	Challenges
	Challenges
	Challenges
	Related Work
	Challenges
	Outline
	State Transition Systems – State
	Transition Logic as Derivation Rules
	Extracting Dependency Logic
	Example: Pairwise Minimal Cost
	Example: Pairwise Minimal Cost
	Example: Pairwise Minimal Cost
	Execution Model
	Execution Traces
	Provenance Model
	Correctness
	Provenance Properties
	Outline
	Provenance Maintenance [SIGMOD 10]
	Recursive Provenance Querying
	Recursive Provenance Querying
	Performance Tradeoffs
	Outline
	Challenge: Adversaries Can Lie
	Threat Model
	Ideal Guarantees
	Realistic Guarantees [SOSP 11]
	Securing Cross-Node Edges
	Secure Provenance Maintenance
	Secure Provenance Querying
	Secure Provenance Querying
	Secure Provenance Querying
	NetTrails [SIGMOD-demo 11]
	Outline
	Ongoing and Future Directions

