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Introduction 

 Success of Cloud 
 Economics of outsourcing data, computing and management 
 Virtualization of resources (storage, computing, networking) 
 Continued migration of applications to the cloud 

 Amazon EC2, Salesforce, Office 365, iCloud, etc 
 Middleware and firewalls in enterprise networks [SIGCOMM 12] 
 Interdomain routing [HotNets 12] 

 Increasing interaction between applications/clients 
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Motivation 

 Call for Attribution 
 Needed in tasks with collective efforts 
Who is responsible for unexpected symptoms? 

 Attacks, bugs, client-side misbehavior 
 Evidences for accountability 
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A Simple Example 

 A simple task that requires collective effort: routing 
 System administrator observes strange behavior 
 Example: the route to foo.com has suddenly changed 
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Why did my route to 
foo.com change?! 

Alice 
foo.com 

Route r1 

Route r2 

Malicious Attack? 

A 

D E 

B C 
Software Bugs? 



An Ideal Solution 
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The Cloud 

A: Because Route r1 disappeared as 
B considers the channel between B 

and C is down.   

Alice 

Route r2 

A 

D E 

B C 

 
 What does attribution look like? 

Why did my route to 
foo.com change?! 

Q: Explain why the 
route to foo.com 

changed to r2. 

Route r1 

foo.com 



A Data-centric Perspective 

 We assume a general distributed system 
 A network consisting of nodes (e.g., VMs) 
 The state of a node is a set of tuples (routes, config, ...) 
 Idea: Attribution as reasoning of state dependencies 

 Base tuples: boundary of the reasoning, considered as facts 6 

Alice 

foo.com 

route(C, foo.com) 

link(C, foo.com) 

route(A, B) A 

B C 

D E 

…… 
route(B, foo.com) 

link(B, C) 

route(A, foo.com) 

link(A, B) route(A, D) link(A, B) 

link(A, D) 



Provenance for Attribution 

 Provenance for encoding state dependencies 
 Explains the derivation of tuples 
 Captures the dependencies between tuples as a graph 
 Attribution of a tuple is a tree rooted at the tuple 

 Route r1 disappeared as B removes the link between B and C 7 

Alice 

foo.com 

route(C, foo.com) 

link(C, foo.com) 

A 

B C 

D E 

route(B, foo.com) 

link(B, C) 

route(A, foo.com) 

link(A, B) 

route(D, foo.com) 

link(D, E) 

route(E, foo.com) 

link(E, B) 



Challenges 

 Historical information about distributed state 
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Alice 
foo.com 

Route r2 

Route r1 



Challenges 

 Historical information about distributed state 
 Correct and complete provenance in transient state 
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Alice 
foo.com 

Route r1 



Challenges 

 Historical information about distributed state 
 Correct and complete provenance in transient state 
 Distributed maintenance – performance tradeoffs 
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Alice 
foo.com 

Route r1 



Challenges 

 Historical information about distributed state 
 Correct and complete provenance in transient state 
 Distributed maintenance – performance tradeoffs 
 Security guarantee in an untrusted environment 
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Alice 
foo.com 

Route r1 



Related Work 
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 Provenance for distributed settings 
 Cloud systems: PA-S3fs [MMS 10], RAMP [IPW 11] 
 Collaborative data sharing systems: Orchestra [GIK+ 07] 

 Provenance for historical system state 
 PASS [MHB+ 06] 
 workflow systems (Kepler [ABJ 06], VisTrails [CFS+ 06], etc) 

 Provenance security 
 Sprov [HSW 09], Pedigree [RBT+ 08] 



Challenges 

 Provenance model (distribution + time) 
 Storage and maintenance at large scale 
 Distributed provenance querying 
 Security guarantees in adversarial environment 

Application 

Store 

Provenance 
Maintenance 

Provenance 
Querying 

Primary system Provenance system 

Network 

Users Operator 

Extractor 
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Outline 

 Introduction 
Motivation: Explain general system anomalies 
 Approach: Secure Time-aware Provenance 

 Provenance Model [SIGMOD 10, VLDB 13] 

 Provenance Maintenance and Querying 
 Securing Network Provenance 
 Conclusion 
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State Transition Systems – State 

 Node’s state captured as tuples 
 Message captured as a triplet (src, dest, +/-tuple) 
 System state S = (H,M), where H is a set of per-node 

state, and M is the channel state 
15 

link 
Src Dest Cost 
A B 3 
A C 5 

pathCost 
Src Dest Cost 
A B 3 
A C 5 
… … … 



Transition Logic as Derivation Rules 

 State transition in general distributed systems 
 E.g. state machine or event-driven model 
 Idea: New state as derivation result of old states 

 

 Derivation rules: abstract dependency logic 
 Example:  

 
 Rule head is derived, if all the predicates in rule body hold 
Written as Network Datalog (NDlog) rules [LCG+ 06] 

mm nnnn @......@@:@ 2211 ττττ ∧∧∧−
Rule head Rule body 
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Extracting Dependency Logic 

 Option 1: Inferred provenance  
 Declarative specifications explicitly capture provenance 
 E.g. Declarative networking, SQL queries, etc. 

 Option 2: Disclosed provenance  
Modified source code reports provenance 

 Option 3: Observed provenance  
 Defined on observed I/Os of a black-box system 
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Declarative Chord DHT 

Hadoop MapReduce 

Quagga Software Router 



Example: Pairwise Minimal Cost 

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1), 
           minCost(@S,D,C2). 

sp1: pathCost(@S,D,C) :- link(@S,D,C). 

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C” 

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C). 
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Example: Pairwise Minimal Cost 

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1), 
           minCost(@S,D,C2). 

sp1: pathCost(@S,D,C) :- link(@S,D,C). 

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C” 

pathCost(@Src,Dst,C) – “a path from node Src to Dst with cost C” 

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C). 
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Example: Pairwise Minimal Cost 

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1), 
           minCost(@S,D,C2). 

sp1: pathCost(@S,D,C) :- link(@S,D,C). 

link(@Src,Dst,C) – “a direct link from node Src to Dst with cost C” 

pathCost(@Src,Dst,C) – “a path from node Src to Dst with cost C” 

minCost(@Src,Dst,C) – “best path from node Src to Dst with minimal cost C” 

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C). 

   One-hop paths 

   Aggregation for min cost 

   Multi-hop paths 
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Execution Model  

sp2a: ΔpathCost(@Z,D,C1+C2) :- Δlink(@S,Z,C1), minCost(@S,D,C2). 
sp2b: ΔpathCost(@Z,D,C1+C2) :- link(@S,Z,C1), ΔminCost(@S,D,C2). 
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 Pipeline Semi-naïve evaluation [LCG+ 06] 
 
 
 Rewrite into event-condition-action rules 
 Consume updates, and generate new updates 



+pathCost(a,c,4) +link(b,a,1) +link(b,c,3) 

mincost(b,c,3) 

Execution Traces 
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a b 

c 

at time t1 
a b 

c 

(b,a,1) 

at time t2 
a b 

c 

at time t0 

sp2: pathCost(@Z,D,C1+C2) :- link(@S,Z,C1),  
                         minCost(@S,D,C2). 

sp1: pathCost(@S,D,C) :- link(@S,D,C). 

sp3: minCost(@S,D,MIN<C>) :- pathCost(@S,D,C). 

sp1 
+pathCost(b,c,3) 

sp3 
+minCost(b,c,3) 

a 

b 

c 

sp2 

sp3 
+minCost(a,c,4) 

-minCost(a,c,5) 

t0@b t2@b t3@a 

 Execution trace as an ordered sequences of events 
 Encode the execution of a state transition system 



Provenance Model 

Constraints 

Rule triggering 
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a b 

c 

at time t1 
a b 

c 

at time t2 

(b,a,1) 

INSERT(t2, b, link(@b,a,1)) EXIST(t2, b, minCost(@b,c,3)) 

DERIVE(t2, b, pathCost(@a,c,4), sp2@b) 

INSERT(t3, a, pathCost(@a,c,4)) 

DERIVE(t3, a, minCost(@a,c,4), sp3@a) 

INSERT(t3, a, minCost(@a,c,4)) 

DELETE(t3, a, minCost(@a,c,5)) 

…… 
INSERT(t0, b, minCost(@b,c,3)) 

Snapshot 

 INSERT/DELETE: Tuple τ was inserted 
(deleted) on node n at time t 

 DERIVE/UNDERIVE: Tuple τ was derived 
(underived) via rule R on node n at time t 

 SEND/RECV: Update +/- τ was sent (received) 
by node n at time t 

pathCost(@a,c,4) 

RECV(t3, a, pathCost(@a,c,4), b, t2) 

SEND(t2, b, pathCost(@a,c,4), a) 

Communication 



Correctness 

 

 Provenance should be “consistent” with the trace 
 Both are artifact from a system execution 
 Idea: Extract a subtrace from provenance graph 

 Extracting subtrace using topological sort 
 Edges in provenance graph represents dependencies 

 Question: how do we define “consistency” 
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Provenance Properties 

 Provenance is valid 
 The extracted subtrace should be a viable trace 

 Provenance is sound 
 The extracted subtrace has same event orders as actual trace 
 Problem: order of concurrent events (no synchronized clocks) 
 Idea: per-node perspective (indistinguishable executions) 

 Provenance is complete 
 Provenance includes complete explanation of state (changes) 
 Idea: state (changes) are reproducible based on provenance 

 Provenance is minimal 
 Provenance is exactly the explanation and nothing more 25 



Outline 

 Introduction 
Motivation: Explain general system anomalies 
 Approach: Secure Time-aware Provenance 

 Provenance Model 
 Maintenance and Querying  [VLDB 13] 

 Securing Provenance 
 Conclusion 
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Provenance Maintenance [SIGMOD 10] 

 Provenance as views of network state [GIK+ 07] 
Maintain in relational tables (prov, ruleExec, send, recv) 
 Incremental view maintenance 
 Pipelined Semi-Naïve (PSN) [LCG+ 06] evaluation 

 

 Automatic rewrite of derivation rules 
 Additionally maintain provenance data 
 Does NOT affect the scalability of the base protocol 

NDlog rule 
NDlog rule +  
provenance 

maintenance rules 

Automatic 
Rewrite 

Execution 

prov ruleExec 

… 
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Recursive Provenance Querying 

28 
provQuery(@N,VID,Time) prov(@N,VID,Time,RID,RTime,RLoc) 

prov.VID = provQuery.VID 

execQuery(@Rloc,RID,Time) ruleExec(@Rloc,RID,Rule,Time,CList,Trigger) 

execQuery.RID = ruleExec.RID 

project (execQuery.Rloc,  
ruleExec.Trigger/CList,execQuery.Time) 
as provQuery(@N,VID,Time) 

project (prov.Rloc, prov.RID, prov.RTime) 
as execQuery(@Rloc,RID,Time) 

 Traversal of the provenance graph 
 Step 1: Retrieve rule execution instances 
 Step 2: Expand dependent derivations 



Recursive Provenance Querying 
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 Traversal of the provenance graph 
 Step 1: Retrieve rule execution instances 
 Step 2: Expand dependent derivations 

 

 Generic framework for provenance querying 
 Formulated in declarative networking engine 
 Allows customization (annotation defined in provenance 

semiring [GKT 07]) and optimization (caching, etc) 
 



Performance Tradeoffs 

 Proactive maintenance 
 Provenance deltas – deltas between adjacent versions 
 Incrementally applied in querying 
 

 Reactive maintenance 
 Idea: sufficient data for reconstructing provenance 
 Input logs – communications and update of base tuples 
 Reconstruct provenance by deterministic replay 
 Long-running systems? Periodic snapshots 

 Analogous to log-structured versioning systems 
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Outline 

 Introduction 
Motivation: Explain general system anomalies 
 Approach: Secure Network Provenance 

 Provenance Model 
 Provenance Maintenance and Querying 
 Securing Network Provenance [SOSP 11] 
 Conclusions 
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Challenge: Adversaries Can Lie 
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The Network 

Q: Explain why the 
route to foo.com 

changed to r2. 

 

Alice 
foo.com 

Route r2 

A 

D E 

B C 

 Problem: adversary can … 
 ... fabricate plausible (yet incorrect) response 
 … point accusation towards innocent nodes 

Everything is fine. Router 
E advertised a new route. 

I should cover up 
the intrusion.  



Threat Model 

 Existing work 
 Trusted kernel, monitor, or hardware 

 E.g. Backtracker [OSDI 06], ReVirt [OSDI 02], A2M [SOSP 07]  

 These components may have bugs or be compromised 
 Alternatives that do have require such trust? 

 No trusted components 
 Adversary has full control over an arbitrary subset of the 

network (Byzantine faults).  
 E.g. Compromised nodes can tamper, drop, or replay information  

 Pessimistic threat model gives strong guarantees 
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Ideal Guarantees 

 Ideally: explanation is always complete and accurate 
 Fundamental limitations 

 E.g. Faulty nodes secretly exchange messages 
 E.g. Faulty nodes communicate outside the system 

 What guarantees can we provide? 
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Realistic Guarantees [SOSP 11] 

 No faults: Explanation is complete and accurate 
 Byzantine fault: Explanation identifies at least one faulty node 
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The Network 

Q: Why did my route to 
foo.com change to r2? 

A: Because someone accessed 
Router D and changed its router 

configuration from X to Y. 

Alice 
foo.com 

Route r2 

A 

D E 

B C 

Aha, at least I know which 
node is compromised. 



Securing Cross-Node Edges 

 Idea 1: Each node keeps vertices about local actions 
 TAP model cleanly partition the provenance graph 

 Idea 2: Make the graph tamper-evident 
 Secure cross-node edges (evidence of omissions) 
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RECV SEND 

SEND RECEIVE 

Signed 
commitment 
from B 

Signed  
ACK 
from A 

Router A Router B 



Secure Provenance Maintenance 

 Tamper-evident logs [HKD 07] 
 Linear append-only list of events 
 Recursively-defined hash chain 
 Include top-level hash in messages 
 Any tampering breaks the chain! 
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Alice 
foo.com 

A 

B C 

D 
E 

…… 
SEND 
RCV-ACK 

…… 
RECV 
ACK 

h14 

h15 

h16 

h17 

SeqNo, SEND 

SeqNo, INS 

SeqNo, ACK 

SeqNo, RECV …… 



Secure Provenance Querying 

 Recursively construct the provenance graph 
 Retrieve secure logs from remote nodes 
 Check for tampering, omission, and equivocation 
 Replay the log to regenerate the provenance graph 
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Alice 
foo.com 

A 

B C 

D 
E 

route(A, foo.com) 

link(A, B) 
Explain the route 

from A to foo.com. 

RECV (from B) 



Secure Provenance Querying 

 Recursively construct the provenance graph 
 Retrieve secure logs from remote nodes 
 Check for tampering, omission, and equivocation 
 Replay the log to regenerate the provenance graph 
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Alice 
foo.com 

A 

B C 

D 
E 

route(B, foo.com) 

link(B, C) 

route(A, foo.com) 

link(A, B) 
RECV (from C) 



Secure Provenance Querying 

 Recursively construct the provenance graph 
 Retrieve secure logs from remote nodes 
 Check for tampering, omission, and equivocation 
 Replay the log to regenerate the provenance graph 
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Alice 
foo.com 

route(C, foo.com) 

link(C, foo.com) 

A 

B C 

D 
E 

link(B, C) 

route(A, foo.com) 

link(A, B) route(B, foo.com) 
OK. Now I know 
how the route 
was derived. 



NetTrails [SIGMOD-demo 11] 

 Based on the RapidNet declarative networking engine 
http://netdb.cis.upenn.edu/rapidnet/ 

 System available for download. 
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Outline 

 Introduction 
Motivation: Explain general system anomalies 
 Approach: Secure Network Provenance 

 Provenance Model 
 Provenance Maintenance and Querying 
 Securing Network Provenance 
 Conclusions 
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Ongoing and Future Directions 
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 Privacy concerns of provenance 
 Tension between attribution and privacy 
 Results in Interdomain routing  [HotNets 11, SIGCOMM 12] 

 Better use of provenance data 
 Provenance-based recovery and damage assessment 
 Feedback for invariant refinement. Deduce invariants 

(desired properties) by mining reported provenance. 

Answer why-not questions 

Project website: http://snp.cis.upenn.edu/ 
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