
Computational Decoys
for Cloud Security

Angelos D. Keromytis
Columbia University

1

Decoys

• Fake objects whose purpose is to deceive
adversaries
– Detection of adversary
– Diversion (attraction) of effort
– Harm avoidance
– Continued misdirection
– Reach-back

2

Real Life Decoys

3

Traditional Cyber Decoys

• Well-known security strategy
– Honeypots
– Honey-monkeys (web)
– Honey-accounts (email spam)

4

Information Decoys

• Existing work on use of decoys
(“honeytokens”)
– Large scale
– Automated generation and management
– Ubiquitous/pervasive

5

Why?

• Focus on attack target: information
– It will leak

• Attempt to sidestep the technical arms

race

6

Decoys as a Primitive

• Decoys/deception should be considered a
general purpose primitive in cybersecurity,
akin to cryptography

• Properties
– diverse
– flexible
– principled
– measurable

7

Decoy Properties

• Believability
• Enticingness
• Detectability
• Variability
• Conspicuousness
• Non-interference

8

Believability Formalization

• Defined for object space M and decoy set D
• Decoy Believability Experiment

– For any d ∈ D, choose two objects m0,m1 ∈ M
such that m0 =d or m1=d, and m0 ≠m1

– Adversary A obtains m0 , m1 and attempts to
choose m* ∈ {m0 , m1 } such that m* != d, using
only information intrinsic to m0, m1

– The output of the experiment is 1 if m* != d
and 0 otherwise.

• Perfect decoy when: Pr[Expbelieve =1]=1/2

9

Broad Applications

• Network eavesdropping [WiSec 2009]
• Tor eavesdropping [RAID 2011]
• Keystroke loggers/rootkits [RAID 2010]
• Source code [ASIACCS 2012]
• Documents (unstructured data)

[SecureComm 2009]

10

Computational Decoys

• Move from data to computation
– Not entirely distinct

• Create uncertainty and confusion to

adversaries that gain access to the cloud
infrastructure

11

Computational Decoys: Goal

• Make it impossible to determine whether a
captured system is handling real or decoy
processing within N time units
– Time units are envisioned to be in the order of

hours or days

• Opportunity for detection, misdirection,
and engagement with adversary

12

Assumptions
• Partitioned, replicated applications (cloud!)
• Adversary can have access to full system

– Possibly including root/kernel-level access
• Adversary cannot see all network traffic inside and

into/out of the cloud
– Adversary cannot determine whether a specific

connection is from the outside or from a cloud-local
proxy, except for adversary’s own connections

• Adversary cannot readily determine ground truth in most
cases

13

14

PoC: DIGIT
• Goal: create uncertainly to the adversary as to what is real
• Threat model: unknown number of replicas is compromised

– Compromised replicas receive requests with mission-sensitive
info

– Adversary does not control user input or issue requests

15

Application-level Traffic Interceptor

• TLS terminator and incoming network traffic inspector
• Application-level protocol Identifier

– Currently: port-based (e.g., 80 is HTTP) and
single-message protocol-based (e.g., filters matching HTTP requests)

• Application-specific user input parsing (modules)
– pairs incoming user-initiated requests with similar decoy requests

to produce a legitimate-decoy traffic mix
– decoys are generated offline and stored in the decoy store
– randomly disseminates the legitimate-decoy traffic mix to the set

of replicas, designated to handle original client request
– reconciles replies from replicas and forwards the result to answer

client’s request

16

Decoy Traffic Generation

• Generate input variations for client’s request
– Context-aware application input randomization
– Example case: Web applications

• Interaction endpoints with clients are well-defined and documented
• Application-specific modules are written to identify the variable parts of

incoming requests and invoke appropriate randomization routine (e.g.,
byte-range or dictionary based)

– Are these variations plausible?

17

Decoy Traffic Generation

• Identify variations exhibiting similar application behavior
1. Evaluate application behavior for generated decoys

• Dynamic binary instrumentation of (Web) application with a PIN tool
• Output of application execution decisions (CFG, BB, SysCalls)

[1]

18

Decoy Traffic Generation

• Identify variations exhibiting similar application behavior
2. Similarity grouping based on application execution path

• Execution trace evaluation tool determines alignment of decoy-input
behavior with actual-input behavior.

– Strict mode: absolute or near-absolute alignment
– Relaxed mode: deviations are permitted as long as

both traces align at the beginning and end and overlap
more than T %.

[2]

19

Decoy Traffic Generation

• Identify variations exhibiting similar application behavior
2. Similarity grouping based on application execution path

• Evaluated on simple custom-built Web applications.
• Aligned successfully different HTTP or application-level responses

(HTTP errors, valid HTTP response and in-app error message) with
execution trace deviations. Input variations included URL fuzzing and
HTTP header manipulation.

• Production of decoy-traffic groups, indexed by legitimate
traffic template, stored in decoy traffic database

• Used in real-time by application-level traffic interceptor

Reachback

• Decoy computation as
cover traffic for payloads
– Active information

gathering
– Forensic analysis (CI)
– Other payloads…

20

Challenges/Next Steps

• Scenario construction
• Characterize supported application (and

data) complexity
– e.g., use of crypto at the application layer
– Can we design applications/systems with

computation decoys in mind?
• Resource expenditure

– Fine-grained I/O multiplexing across replicas
• Evaluation/validation

21

	Computational Decoys�for Cloud Security
	Decoys
	Real Life Decoys
	Traditional Cyber Decoys
	Information Decoys
	Why?
	Decoys as a Primitive
	Decoy Properties
	Believability Formalization
	Broad Applications
	Computational Decoys
	Computational Decoys: Goal
	Assumptions
	PoC: DIGIT
	Application-level Traffic Interceptor
	Decoy Traffic Generation
	Decoy Traffic Generation
	Decoy Traffic Generation
	Decoy Traffic Generation
	Reachback
	Challenges/Next Steps

